Advertisement

Journal of Crop Science and Biotechnology

, Volume 15, Issue 2, pp 101–105 | Cite as

Genetic variation and gene flow estimation of Nepenthes khasiana Hook. F- A threatened insectivorous plant of India as revealed by RAPD markers

  • Iaibadaiahun Nongrum
  • Shrawan Kumar
  • Suman Kumaria
  • Pramod Tandon
Research Article

Abstract

Random Amplified Polymorphic DNA (RAPD) markers were utilized for determination of diversity within and among the three populations of Nepenthes khasiana Hook f., a threatened insectivorous plant of Meghalaya (India). A total of 90 bands were generated from 10 random amplification polymorphic DNA (RAPD) primers of which 71 were found to be polymorphic (78.89%). Nei’s gene diversity (h) ranged between 0.124–0.201 with overall diversity of 0.228 while Shannon’s information index I) values recorded between 0.187–0.308 with an average value of 0.352. The values of gene flow (Nm = 1.284) and the diversity among populations (0.280) recorded demonstrates higher genetic variation within the population. AMOVA analysis revealed a low level of genetic variation (21.96%) among the populations. This study indicates that some variation still exists within and between the existing populations of N. khasiana, thus, these populations could provide materials for re-establishing of this important rare and threatened species.

Key words

conservation genetic diversity gene flow Nepenthes khasiana RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhau BS, Medhi K, Sarkar T, Saikia SP. 2009. PCR based molecular characterization of Nepenthes khasiana Hook. f.-pitcher plant. Genet. Resour. Crop Evol. 56: 1183–1193CrossRefGoogle Scholar
  2. Bordoloi RPM. 1977. The pitcher plant Nepenthes khasiana. Sreeguru press, GuwahatiGoogle Scholar
  3. Charlesworth B, Nordborg M, Charlesworth D. 1997. The effects of local selection, balanced polymorphism, and back ground selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70: 155–174PubMedCrossRefGoogle Scholar
  4. Chaveerach A, Tanomtang A, Sudmood R, Tanee T. 2006. Genetic diversity among geographically distributed population of Nepenthes mirabilis. Biologia (Bratisl) 61: 295–298CrossRefGoogle Scholar
  5. Excoffier L, Laval G, Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47–50Google Scholar
  6. Hamrick JL, Godt MJW. 1989. Allozyme diversity in plant species. In AHD Brown, MT Clegg, AL Kahler, BS Weir, eds, Plant Population Genetics, Breeding and Genetic Resources, Sinauer, Sunderland, Massachusetts, pp 43–63Google Scholar
  7. Hogbin PM, Peakall R. 1999. Evaluation of the conservation of genetic research to the management of endangered plant Zieria prostrata. Conserv. Biol. 13: 514–522CrossRefGoogle Scholar
  8. Jebb M, Cheek M. 1997. A skeletal revision of Nepenthes (Nepenthaceae). Blumea 42: 86–87Google Scholar
  9. Kimura M, Crow J. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725–738PubMedGoogle Scholar
  10. Kumar S, Kumaria S, Sharma SK, Rao SR, Tandon P. 2011. Genetic diversity assessment of Jatropha curcas L. germplasm from Northeast India. Biomass Bioenerg. 35: 3063–3070CrossRefGoogle Scholar
  11. Lewontin RC. 1972. The apportionment of human diversity. Evol. Biol. 6: 381–398CrossRefGoogle Scholar
  12. Lynch M, Milligan BG. 1994. Analysis of population structure with RAPD markers. Mol. Ecol. 3: 91–99PubMedCrossRefGoogle Scholar
  13. Meffe GK. 1994. Genetics: conservation of diversity within species. In GK Meffe, CR Carroll, eds, Principles of Conservation Biology. Sinauer Associates, Sunderland, pp 161–201Google Scholar
  14. Miller MP. 1998. AMOVA-PREP1.01. A Program for the Preparation of AMOVA Input Files from Dominant-Marker Raw Data. Northern Arizona University, Flagstaff, AZ. USAGoogle Scholar
  15. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70: 3321–3323PubMedCrossRefGoogle Scholar
  16. Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15: 8–15CrossRefGoogle Scholar
  17. Prevost A, Wilkinson MJ. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107–112CrossRefGoogle Scholar
  18. Rohlf FJ. 1998. NTSYSpc Numerical Taxonomy and Multivariate Analysis System, Version 2.02. Setauket, Exeter SoftwareGoogle Scholar
  19. Savolainen O, Pyhajarvi T, Knurr T. 2007. Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38: 595–619CrossRefGoogle Scholar
  20. Schoen DJ, Brown AHD. 1991. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc. Natl. Acad. Sci. USA 88: 4494–4497PubMedCrossRefGoogle Scholar
  21. Sharma SK, Kumar S, Rawat D, Kumaria S, Kumar A, Rao SR. 2011. Genetic diversity and gene flow estimation in Prosopis cineraria (L.) Druce: A key stone tree species of Indian Thar Desert. Biochem. Syst. Ecol. 39: 9–13CrossRefGoogle Scholar
  22. Wright SI, Gaut BS. 2005. Molecular population genetics and the search for adaptive evolution in plants. Mol. Biol. Evol. 22: 506–519PubMedCrossRefGoogle Scholar
  23. Yeh FC, Young RC, Boyle T. 1999. Microsoft Window-based Freeware for Population Genetic Analysis (POPGENE, Ver.1.31)Google Scholar

Copyright information

© Korean Society of Crop Science and Springer Netherlands 2012

Authors and Affiliations

  • Iaibadaiahun Nongrum
    • 1
  • Shrawan Kumar
    • 2
  • Suman Kumaria
    • 2
  • Pramod Tandon
    • 2
  1. 1.Biotechnology DepartmentSt. Edmund’s CollegeShillongIndia
  2. 2.Plant Biotechnology Laboratory, Centre for Advanced Studies in BotanyNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations