Journal of Crop Science and Biotechnology

, Volume 12, Issue 4, pp 217–226 | Cite as

Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils

  • Munees Ahemad
  • Mohammad Saghir Khan
Research Article


An experiment was carried out to determine the plant growth-promoting activities of fipronil- and pyriproxyfen-tolerant Mesorhizobium isolates in the presence and absence of insecticides. The bioremediation and plant growth-promoting potentials of Mesorhizobium isolate (MRC4) was assessed using chickpea as a test crop grown under fipronil- and pyriproxyfen-stressed soils. In this study, the most promising mesorhizobial isolate (MRC4) tolerated fipronil and pyriproxyfen up to a concentration of 1600 μg ml−1 and 1400 μg ml−1, respectively. Isolate MRC4 produced a substantial amount of indole acetic acid (44.3 μg ml−1), salicylic acid (35 μg ml−1), 2,3 di-hydroxybenzoic acid (19 μg ml−1), and exo-polysaccharides (21 μg ml−1) in the absence of insecticides. The plant growth-promoting substances displayed by the isolate MRC4 declined progressively with increasing concentrations of each insecticide. The insecticide tolerant isolate MRC4 was further tested for its effect on chickpea plants grown in fipronil- and pyriproxyfen-treated soils. The insecticide-tolerant isolate MRC4 increased the dry matter accumulation progressively. A maximum increase of 80 (at 600 μg kg−1 soil of fipronil) and 118% (at 3900 μg kg−1 soil of pyriproxyfen) was recorded 135 days after sowing when compared to noninoculated plants treated with the same rates of each insecticide. Moreover, Mesorhizobium isolate MRC4 when used in fipronil- and pyriproxyfen-treated soil also increased symbiotic properties (nodulation and leghaemoglobin content), root N, shoot N, root P, shoot P, seed yield, and seed protein compared to the un-inoculated but treated solely with insecticide. The present finding suggests that the mesorhizobial isolate endowed with multiple properties could be used to facilitate the productivity of chickpea under insecticidestressed soils.

Key words

fipronil pyriproxyfen insecticide chickpea Mesorhizobium plant growth-promoting rhizobacteria (PGPR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aajoud A, Ravanel P, Tissut M. 2003. Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J. Agric. Food Chem. 51: 1347–1352CrossRefPubMedGoogle Scholar
  2. Abd-Alla MH, Omar SA, Karanxha S. 2000. The impact of pes ticides on arbuscular mycorrhizal and nitrogen-fixing sym bioses in legumes. Appl. Soil Ecol. 14: 191–200CrossRefGoogle Scholar
  3. Alexander DB, Zuberer DA. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fert. Soils 12, 39–45CrossRefGoogle Scholar
  4. Bakker AW, Schipper B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol. Biochem. 19: 451–457CrossRefGoogle Scholar
  5. Bano N, Musarrat J. 2003. Isolation and characterization of phorate degrading soil bacteria of environmental and agro nomic significance. Lett. Appl. Microbiol. 36: 349–353CrossRefPubMedGoogle Scholar
  6. Barker SJ, Tagu D. 2000. The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Reg. 19: 144–154Google Scholar
  7. Bobe A, Coste CM, Cooper JF. 1997. Factors influencing the adsorption of fipronil in soils. J. Agric. Food Chem. 45: 4861–4865CrossRefGoogle Scholar
  8. Bobe A, Cooper JF, Coste CM, Mulle MA. 1998a. Behavior of fipronil in soil under Sahelian plain field conditions. Pesticide Sci. 52: 275–281CrossRefGoogle Scholar
  9. Bobe A, Meallier P, Cooper JF, Coste CM. 1998b. Kinetics and mechanisms of abiotic degradation of fipronil (hydrolysis and photolysis). J. Agric. Food Chem. 46: 2834–2839CrossRefGoogle Scholar
  10. Boldt TS, Jacobsen CS. 1998. Different toxic effects of the sulphonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads iso lated from an agricultural soil. FEMS Microbiol. Lett. 161: 29–35CrossRefGoogle Scholar
  11. Brick JM, Bostock RM, Silversone SE. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535–538Google Scholar
  12. Camerini S, Senatore B, Enza L, Esther I, Carmen B, Giancarlo M, Rotino GL, Bruno C, Roberto D. 2008. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch. Microbiol. 190: 67–77CrossRefPubMedGoogle Scholar
  13. Chanton PF, Ravanel P, Tissut M, Meyran JC. 2001. Toxicity and bioaccumulation of fipronil in the non target arthropodan fauna associated with subalpine mosquito breeding. Ecotoxicol. Environ. Saf. 52: 8–12CrossRefGoogle Scholar
  14. Courtois J, Jean-Paul S, Corinne R, Alain H, Claude G, Luciana D, Jean-Noël B, Bernard C. 1994. Exopolysaccharide produc tion by the Rhizobium meliloti M5N1 CS strain. Location and of quantitation the sites of O-acetylation. Carbohydr. Polymers 25: 7–12CrossRefGoogle Scholar
  15. Das AC, Chakravarty A, Sen G, Sukul P, Mukherjee D. 2005. A comparative study on the dissipation and microbial metabo lism of organophosphate and carbamate insecticides in orchaqualf and fluvaquent soils of West Bengal. Chemosphere 58: 579–584CrossRefPubMedGoogle Scholar
  16. Devi KK, Seth N, Kothamasi S, Kothamasi D. 2007. Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr. Microbiol. 54: 74–78CrossRefPubMedGoogle Scholar
  17. Dudeja SS, Singh PC. 2008. High and low nodulation in relation to molecular diversity of chickpea Mesorhizobia in Indian soils. Arch. Agron. Soil Sci. 54: 109–120CrossRefGoogle Scholar
  18. Dye DW. 1962. The inadequacy of the usual determinative tests for the identification of xanthomonas spp. Nat. Sci. 5: 393–416Google Scholar
  19. Evans J, Seidel J, O’Connor GE, Watt J, Sutherland M. 1991. Using omethoate insecticide and legume inoculant on seed. Aust. J. Exp. Agric. 31: 71–76CrossRefGoogle Scholar
  20. Figueiredo MVB, Martinez CR, Burity HA, Chanway CP. 2007. Plant growth promoting rhizobacteria for improving nodula tion and nitrogen fixation in the common bean (Phaseolus vulgaris L). World J. Microbiol. Biotechnol. DOI 101007/s11274-007-9591-4Google Scholar
  21. Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. 2007. Pesticides reduce symbiotic efficiency of nitrogen-fix ing rhizobia and host plants. PNAS 104: 10282–10287CrossRefPubMedGoogle Scholar
  22. Frankenberger Jr. WT, Arshad M. 1995. Phytohormones in soils: microbial production and function. Marcel Dekker, Inc., New YorkGoogle Scholar
  23. Ghosh AC, Ghosh S, Basu PS. 2005. Production of extracellular polysaccharide by a Rhizobium species from root nodules of the leguminous tree Dalbergia lanceolaria. Eng. Life Sci. 5: 378–382.CrossRefGoogle Scholar
  24. Gordon S, Weber RP. 1951. The colorimetric estimation of IAA. Plant Physiol. 26: 192–195CrossRefPubMedGoogle Scholar
  25. Guo Y, Zheng H, Yang Y, Wang, H. 2007. Characterization of Pseudomonas corrugata strain P94 isolated from soil in Beijing as a potential biocontrol agent. Curr. Microbiol. 55: 247–253CrossRefPubMedGoogle Scholar
  26. Gupta N, Gahlot R, Lakshmninarayana K, Narula N. 1994. Pesticide resistance among Azotobacter chroococcum soil isolates and mutants. Microbiol. Res. 149: 391–393Google Scholar
  27. Hansson GB, Klemedtsson L, Stenström J, Torstensson L. 1991. Testing the influence of chemicals on soil autotrophic ammo nium oxidation. Environ. Toxic. Wat. Qual. 6: 351–360CrossRefGoogle Scholar
  28. Holt JG, Krieg NR, Sneath PHA, Staley JT, Willams ST. 1994. Bergey’s Manual of Determinative Bacteriology, Ninth edition, Williams and Wilkins, USAGoogle Scholar
  29. Indiragandhi P, Anandham R, Madhaiyan M, Sa TM. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56: 327–333CrossRefPubMedGoogle Scholar
  30. Iswaran V, Marwah TS. 1980. A modified rapid Kjeldahl method for determination of total nitrogen in agricultural and biological materials. Geobios 7: 281–282Google Scholar
  31. Jackson ML. 1967. Soil chemical analysis, Prentice-Hall of India, New Delhi, pp 134–144Google Scholar
  32. Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG. 2003. Plant growth promotion in soil by some inoculated microorgan isms. J. Microbiol. 41: 271–276Google Scholar
  33. Joseph B, Patra RR, Lawrence R. 2007. Characterization of plant growth promoting rhizobacteria associated with chick pea (Cicer arietinum L.). Int. J. Plant Prod. 2: 141–152Google Scholar
  34. Juneja S, Dogra RC. 1978. Effect of aldrin on growth and oxida tive metabolism of rhizobia. J. Appl. Microbiol. 44: 107–115CrossRefGoogle Scholar
  35. Karadeniz A, Topcuoğlu SF, İnan S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22: 1061–1064CrossRefGoogle Scholar
  36. Kaur A, Kaur A. 2005. Impact of imidacloprid on soil fertility and nodulation in mung bean (Vigna radiata). Asian J. Water. Environ. Pollut. 2: 63–67Google Scholar
  37. Khan H, Zeb A, Ali Z, Shah SM. 2009. Impact of five insecti cides on chickpea (Cicer arietinum L.) nodulation, yield and nitrogen fixing rhizospheric bacteria. Soil Environ. 28:56–59Google Scholar
  38. Khan MS, Zaidi A, Aamil M. 2004. Influence of herbicides on Chickpea Mesorhizobium symbiosis. Agronomie 24: 123–127CrossRefGoogle Scholar
  39. Khan MS, Zaidi A, Rizvi PQ. 2006. Biotoxic effects of herbi cides on growth, nodulation, nitrogenase activity, and seed production in chickpeas. Comm. Soil Sci. Plant Anal. 37: 1783–1793CrossRefGoogle Scholar
  40. Kundu GG, Trimohan. 1989. Effect of Rhizobium in association with granular insecticides on nodulation and yield in soybean. Current Sci. 58: 1340–1342Google Scholar
  41. Lopez L, Pozo C, Rodelas B, Calvo C, Juarez B, Martinez-Toledo MV, Gonzalez-Lopez J. 2005. Identification of bacte ria isolated from an oligotrophic lake with pesticide removal capacities. Ecotoxicol. 14: 299–312CrossRefGoogle Scholar
  42. Madhavi B, Anand CS, Bharathi A, Polasa H. 1993. Effect of pesticides on growth of rhizobia and their host plants during symbiosis. Biomed. Environ. Sci. 6; 89–94.PubMedGoogle Scholar
  43. Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14: 23–34CrossRefPubMedGoogle Scholar
  44. Miettinen P, Echegoyen PE. 1996. The effect of two pesticides (Vitavax-300 and Gaucho) on rhizobia and on the nodulation of four legumes. Agric. Food Sci. Finland 5: 203–207Google Scholar
  45. Mody BR, Bindra MO, Modi VV. 1989. Extracellular polysac charides of cowpea rhizobia: compositional and functional studies. Arch. Microbiol. 1: 2–5Google Scholar
  46. Mukherjee I, Gopal M, Mathur DS. 2007. Behavior of bcyfluthrin after foliar application on chickpea (Cicer aretini um L.) and pigeon pea (Cajanus cajan L.). Bull. Environ. Contam. Toxicol. 78: 85–89CrossRefPubMedGoogle Scholar
  47. Nazarian A, Mousawi M. 2005. Study of bacterial resistance to organophosphorous pesticides in Iran. Iranian J. Environ. Health Sci. Eng. 2: 207–211Google Scholar
  48. Neiland JB. 1981. Microbial iron compounds. Ann. Rev. Biochem. 50: 715–731CrossRefGoogle Scholar
  49. Pal R, Chakrabarti K, Chakraborty A, Chowdhury A. 2006. Effect of pencycuron on microbial parameters of waterlogged soil. J. Environ. Sci. Health B. 41: 1319–1331PubMedGoogle Scholar
  50. Pattan C, Glick BR. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207–220CrossRefGoogle Scholar
  51. Persello-Cartieaux F, Nussaume L, Robaglia C. 2003. Tales from the underground: molecular plant-rhizobacteria interact tions. Plant Cell Environ. 26: 189–199CrossRefGoogle Scholar
  52. Reeves MW, Pine L, Neilands JB, Balows A. 1983. Absence of siderophore activity in Legionella species grown in iron-deficient media. J. Bacteriol. 154: 324–329PubMedGoogle Scholar
  53. Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J. 2008. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vul garis L.). Plant Soil 302: 149–161CrossRefGoogle Scholar
  54. Romdhane SB, Tajini F, Trabelsi M, Aouani ME, Mhamdi R. 2007. Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulating chickpea (Cicer arietinum) in Tunisia. World J. Microbiol. Biotechnol. 23: 1195–1201CrossRefGoogle Scholar
  55. Sadasivam S, Manikam A. 1992. Biochemical Methods for Agricultural Sciences, Wiley Eastern Limited, New Delhi, IndiaGoogle Scholar
  56. Sharma S. 2003. Response of various isolates of Bradyrhizobium inoculation on protein content and its yield attributes of green gram [Vigna radiata (L.) Wilczek]. Legume Res. 26: 28–31Google Scholar
  57. Shivaramaiah HM, Kennedy IR. 2006. Biodegradation of endo sulfan by a soil bacterium. J. Environ. Sci. Health B. 41: 895–905PubMedGoogle Scholar
  58. Sinha S, Mukherjee SK. 2008. Cadmium-induced siderophore production by a high cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56: 55–60CrossRefPubMedGoogle Scholar
  59. Somasegaran P, Hoben HJ. 1994. Handbook for rhizobia: meth ods in legume Rhizobium technology. New York: Springer.Google Scholar
  60. Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425–448CrossRefPubMedGoogle Scholar
  61. Sridevi M, Yadav NCS, Mallaiah KV. 2008. Production of indole-acetic-acid by Rhizobium isolates from Crotalaria species. Res. J. Microbiol. 3: 276–281CrossRefGoogle Scholar
  62. Tank N, Saraf M. 2003. Phosphate solubilization, exopolysac charide production and indole acetic acid secretion by rhi zobacteria isolated from Trigonella foenum-graecum. Ind. J. Microbiol. 43: 37–40Google Scholar
  63. Tomlin CDS. 2000. The Pesticide Manual, 12th ed CDS (ed) The British Crop Protection Council, Surrey, UKGoogle Scholar
  64. Tu CM. 1996. Effect of selected herbicides on activities of microorganisms in soils. J Environ. Sci. Health B. 31: 1201–1214CrossRefGoogle Scholar
  65. Upadhyay RG, Sharma S. 2003. Effect of seed inoculation with various Bradyrhizobium strains on growth and yield attribute es of mungbean [Vigna radiata (L.) Wilczek]. Legume Res. 26: 211–214Google Scholar
  66. van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U. 2006. Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant 1[W]. Plant Physiol. 140: 1494–1506CrossRefPubMedGoogle Scholar
  67. Vasileva V, Ilieva A. 2007. Effect of presowing treatment of seeds with insecticides on nodulating ability, nitrate reductase activity and plastid pigments content of lucerne (Medicago sativa L). Agron. Res. 5: 87–92Google Scholar
  68. Vincent JM. 1970. A Manual for the Practical Study of Root Nodule Bacteria, IBP Handbook No. 15. Blackwell Scientific Publications, Oxford, UKGoogle Scholar
  69. Wani PA, Khan MS, Zaidi A. 2008. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol. Lett. 30: 159-CrossRefPubMedGoogle Scholar
  70. Wani PA, Khan MS, Zaidi A. 2007a. Effect of metal tolerant plant growth promoting Bradyrhizobium sp (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70: 36–45CrossRefPubMedGoogle Scholar
  71. Wani PA, Khan MS, Zaidi A. 2007b. Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J.Google Scholar
  72. Wani PA, Zaidi A, Khan AA, Khan MS. 2005. Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials rhizospheric microorganisms. Ann. Plant Protec. Sci14. 13: 139–144Google Scholar
  73. Yi Y, Huang W, Ge Y. 2007. Exopolysaccharide: a novel impor tant factor in the microbial dissolution of tricalcium phos phate. World J. Microbiol. Biotechnol. 24: 1059–1065CrossRefGoogle Scholar

Copyright information

© Korean Society of Crop Science and Springer Netherlands 2009

Authors and Affiliations

  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations