Advertisement

Birth defects surveillance: experiences in Argentina and Colombia

  • Boris Groisman
  • Rosa Liascovich
  • María Paz Bidondo
  • Pablo Barbero
  • Santiago Duarte
  • Ana Laura Tellechea
  • Jorge Holguín
  • Catherine Rodríguez
  • Paula Hurtado-Villa
  • Natalia Caicedo
  • Gabriela Botta
  • Ignacio Zarante
Original Article

Abstract

Birth defects (BDs) are structural or functional anomalies, sporadic or hereditary, of prenatal origin. Public health surveillance is defined as the ongoing systematic collection, analysis, and interpretation of outcome-specific data for use in the planning, implementation, and evaluation of public health practice. BD surveillance systems may have different characteristics according to design, coverage, type of surveillance, case ascertainment, case definition, BD description, maximum age of diagnosis, pregnancy outcomes, coding systems, and the location of the coding process (central or local). The aim of this article is to describe and compare methodology, applications, and results of birth defect surveillance systems in two South-American countries: Colombia and Argentina. In both countries, the surveillance systems developed activities in relation to the Zika virus emergency. For most BDs, a statistically significant higher prevalence is observed in Argentina-RENAC than in Colombian registries. This may be due to methodological reasons or real differences in prevalence. The strengths, weaknesses, and the future perspectives of the Argentine and Colombian systems are presented. When developing a surveillance system, the objectives, the available resources, and previous experiences in similar contexts must be taken into account. In that sense, the experience of Argentina and Colombia can be useful for others when developing a birth defect surveillance system.

Keywords

Birth defects Argentina Colombia Registries Surveillance 

Notes

Funding

RENAC was supported in-part by UNICEF Argentina; the National Ministry of Health; the National Agency for Science and Technology; and the National Ministry of Science and Technology.

The Bogota program is funded by the Health Secretariat of Bogotá and the Pontificia Universidad Javeriana Bogotá. The Cali program is funded by the Municipal Public Health Secretariat of Cali and the Pontificia Universidad Javeriana Cali.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. Baltaxe E, Zarante I (2006) Prevalence of congenital heart disease in 44,985 newborns in Colombia. Arch Cardiol Mex 76(3):263–268 SpanishGoogle Scholar
  2. Bidondo MP, Groisman B, Gili J, Liascovich R, Barbero P (2014) Grupo de Trabajo RENAC. Prevalencia de anomalías congénitas en Argentina y su potencial impacto en los servicios de salud. Rev Argent Salud Pública 5(21):38–44Google Scholar
  3. Bidondo MP, Groisman B, Barbero P, Liascovich R (2015a) Public health approach to birth defects: the argentine experience. J Community Genet 6(2):147–156.  https://doi.org/10.1007/s12687-014-0209-x
  4. Bidondo MP, Groisman B, Gili JA, Liascovich R, Barbero P (2015b) Estudio de prevalencia y letalidad neonatal en pacientes con anomalías congénitas seleccionadas con datos del Registro Nacional de Anomalías Congénitas de Argentina. Arch Argent Pediatr Ago 113(4):295–302Google Scholar
  5. Bidondo MP, Liascovich R, Barbero P, Groisman B (2015c) Prevalencia de defectos del tubo neural y estimación de casos evitados posfortificación en Argentina. Arch Argent Pediatr 113(6):498–501Google Scholar
  6. Bidondo MP, Groisman B, Tardivo A, Tomasoni F, Tejeiro V, Camacho I, Vilas M, Liascovich R, Barbero P (2016) Diprosopus: Systematic review and report of two cases. Birth Defects Res A Clin Mol Teratol 106:993–1007.  https://doi.org/10.1002/bdra.23549. CrossRefGoogle Scholar
  7. Botto LD, Robert-Gnansia E, Siffel C, Harris J, Borman B, Mastroiacovo P (2006) Fostering international collaboration in birth defects research and prevention: a perspective from the international clearinghouse for Birth defects surveillance and research. Am J Public Health 96(5):774–780CrossRefGoogle Scholar
  8. Calderón J, Zarante I (2006) Congenital urological anomalies: epidemiological description and associated risk factors in Colombia 2001–2004. Arch Esp Urol 59(1):7–14 SpanishGoogle Scholar
  9. Cassinelli A, Pauselli N, Piola A, Martinelli C, Alves de Azevedo JL, Bidondo MP, Groisman B, Barbero P, Liascovich R, Sala A (2018) National health care network for children with oral clefts: organization, functioning, and preliminary outcomes. Arch Argent Pediatr 116(1):e26–e33Google Scholar
  10. Castilla EE, Orioli IM (2004) ECLAMC: the Latin-American collaborative study of congenital malformations. Community Genet 7(2–3):76–94Google Scholar
  11. Castilla EE, Peters PW (1992) Public health impact of birth defects monitoring systems: national and international efforts. Birth Defects Orig Artic Ser 28(3):27–36Google Scholar
  12. Christianson A, Modell B (2006) Medical genetics in developing countries. Annu Rev Genomics Hum Genet 5:219–265CrossRefGoogle Scholar
  13. Christianson, A., Howson C, Modell C (2006). March of dimes global report of birth defects: the hidden toll of dying and disabled children. Available from : https://www.marchofdimes.org/global-report-on-birth-defects-the-hidden-toll-of-dying-and-disabled-children-full-report.pdf Accessed June 20, 2018
  14. Correa C, Mallarino C, Peña R, Rincón LC, Gracia G, Zarante I (2014) Congenital malformations of pediatric surgical interest: prevalence, risk factors, and prenatal diagnosis between 2005 and 2012 in the capital city of a developing country. Bogotá, Colombia. J Pediatr Surg 49(7):1099–1103.  https://doi.org/10.1016/j.jpedsurg.2014.03.001 CrossRefGoogle Scholar
  15. DANE, 2017 (National Administrative Statistics Department in Colombia) Available at: http://www.dane.gov.co/ Accessed on: June 20, 2018
  16. DEIS, Dirección de Estadísticas e Información en Salud (2017) Deaths of children under 5 years old by age group according to selected causes - year 2016. Available at: http://www.deis.msal.gov.ar/wp-content/uploads/2016/09/2016-Tabla35.html Accessed June 20, 2018
  17. Fernández N, Henao-Mejía J, Monterrey P, Pérez J, Zarante I (2012) Association between maternal prenatal vitamin use and congenital abnormalities of the genitourinary tract in a developing country. J Pediatr Urol 8(2):121–126.  https://doi.org/10.1016/j.jpurol.2011.07.005 CrossRefGoogle Scholar
  18. Fernández N, Lorenzo A, Bägli D, Zarante I (2016) Altitude as a risk factor for the development of hypospadias. Geographical cluster distribution analysis in South America. J Pediatr Urol 12(5):307.e1–307.e5.  https://doi.org/10.1016/j.jpurol.2016.03.015 CrossRefGoogle Scholar
  19. Fernández N, Pérez J, Monterrey P, Poletta FA, Bägli DJ, Lorenzo AJ, Zarante I (2017) ECLAMC study: prevalence patterns of hypospadias in South America: multi-national analysis over a 24-year period. Int Braz J Urol 43(2):325–334.  https://doi.org/10.1590/S1677-5538.IBJU.2016.0002 CrossRefGoogle Scholar
  20. García MA, Imbachí L, Hurtado PM, Gracia G, Zarante I (2014) Ultrasound detection of congenital anomalies in 76,155 births in the cities of Bogotá and Cali, 2011-2012. Biomedica 34(3):379–386.  https://doi.org/10.1590/S0120-41572014000300008 SpanishCrossRefGoogle Scholar
  21. Groisman B, Bidondo MP, Barbero P, Gili J, Liascovich R, Grupo de Trabajo RENAC (2013a) Registro Nacional de Anomalías Congénitas de Argentina. Arch Argent Pediatr 111(6):484–494Google Scholar
  22. Groisman B, Bidondo MP, Gili J, Barbero P, Liascovich R (2013b) Strategies to achieve sustainability and quality in Birth defects registries: the experience of the National Registry of Congenital Anomalies of Argentina. J Registry Manag 40(1):29–31Google Scholar
  23. Groisman B, Bidondo MP, Barbero P, Liascovich R (2016a) La Red Nacional de Anomalías Congénitas (RENAC): objetivos ampliados de la vigilancia. Arch Argent Pediatr 114(4):295–297Google Scholar
  24. Groisman B, Liascovich R, Gili J, Barbero P, Bidondo MP, the RENAC Task Force (2016b) Sirenomelia in Argentina: prevalence, geographic clusters and temporal trends analysis. Birth Defects Research (Part A) 106:604–611CrossRefGoogle Scholar
  25. Groisman B, Bidondo MP, Liascovich R, Barbero P (2016c) Microcefalia en Argentina según datos de la Red Nacional de Anomalías Congénitas. Rev Argent Salud Pública 7(26):39–42Google Scholar
  26. Groisman B, Gili J, Gimenez L, Poletta F, Bidondo MP, Barbero P, Liascovich R, López-Camelo J (2017) Geographic clusters of congenital anomalies in Argentina. J Community Genet 8(1):1–7Google Scholar
  27. Hurtado-Villa P, Puerto AK, Victoria S, Gracia G, Guasmayán L, Arce P, Álvarez G, Blandón E, Rengifo N, Holguín JA, Durán A, Zarante I (2017) Raised frequency of microcephaly related to Zika virus infection in two birth defects surveillance systems in Bogotá and Cali, Colombia. Pediatr Infect Dis J 36(10):1017–1019Google Scholar
  28. López B, Polo C, Martín MC, Mercado G, Groisman B, Bidondo MP, Liascovich R, Barbero P (2015) Secuencia Moebius. Análisis retrospectivo de 30 pacientes. Med Inf XXII(2):76–82Google Scholar
  29. Luquetti DV, Koifman RJ (2011) Surveillance of birth defects: Brazil and the US. Cien Saude Colet 16(Suppl 1):777–785CrossRefGoogle Scholar
  30. Mai CT, Isenburg J, Langlois PH, Alverson CJ, Gilboa SM, Rickard R, Canfield MA, Anjohrin SB, Lupo PJ, Jackson DR, Stallings EB, Scheuerle AE, Kirby RS, for the National Birth Defects Prevention Network (2015) Population-based Birth defects data in the United States, 2008 to 2012: presentation of state-specific data and descriptive brief on variability of prevalence. Birth defects research part a, clinical and molecular. Teratology 103(11):972–993.  https://doi.org/10.1002/bdra.23461. Google Scholar
  31. Martín MC, Cristiano E, Villanueva M, Bonora MC, Berguio N, Tocci A, Groisman B, Bidondo MP, Liascovich R, Barbero P (2014) Esophageal atresia and prenatal exposure to mycophenolate. Reprod Toxicol 50:117–121CrossRefGoogle Scholar
  32. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika virus and Birth defects—reviewing the evidence for causality. N Engl J Med 374(20):1981–1987.  https://doi.org/10.1056/NEJMsr1604338 CrossRefGoogle Scholar
  33. Sargiotto C, Bidondo MP, Liascovich R, Barbero P, Groisman B (2015) Descriptive study on neural tube defects in Argentina. Birth Defects Res A Clin Mol Teratol 103(6):509–516CrossRefGoogle Scholar
  34. Sever L, Lynberg MC, Edmonds LD (1993) The impact of congenital malformations on public health. Teratology 48(6):547–549CrossRefGoogle Scholar
  35. SGSS. Sistema General de Seguridad Social en Salud, Colombia (2013) Guía de práctica clínica Detección de anomalías congénitas en el recién nacido. Para uso de profesionales de salud. - Guía No. 03Google Scholar
  36. Tassinari S, Martínez-Vernaza S, Erazo-Morera N, Pinzón-Arciniegas MC, Gracia G, Zarante I (2018) Epidemiology of congenital heart diseases in Bogotá, Colombia, from 2001 to 2014: improved surveillance or increased prevalence? Biomedica 38:148–155.  https://doi.org/10.7705/biomedica.v38i0.3381 CrossRefGoogle Scholar
  37. Tellechea AL, Luppo V, Morales MA, Groisman B, Baricalla A, Fabbri C, Sinchi A, Alonso A, Gonzalez C, Ledesma B, Masi P, Silva M, Israilev A, Rocha M, Quaglia M, Bidondo MP, Liascovich R, Barbero P, RENAC Task Force1 (2018) Surveillance of microcephaly and selected brain anomalies in Argentina: relationship with Zika virus and other congenital infections. Birth Defects Res 110:1016–1026.  https://doi.org/10.1002/bdr2.1347 CrossRefGoogle Scholar
  38. Thacker SB, Berkelman RL (1988) Public health surveillance in the United States. Epidemiol Rev 10:164–190CrossRefGoogle Scholar
  39. WHO/CDC/ICBDSR (2014) Birth defects surveillance: a manual for programme managers. World Health Organization, GenevaGoogle Scholar
  40. Zarante I, López MA, Caro A, García-Reyes JC, Ospina JC (2009) Impact and risk factors of craniofacial malformations in a Colombian population. Int J Pediatr Otorhinolaryngol 73(10):1434–1437.  https://doi.org/10.1016/j.ijporl.2009.07.012 CrossRefGoogle Scholar
  41. Zarante I, Franco L, López C, Fernández N (2010) Frequencies of congenital malformations: assessment and prognosis of 52,744 births in three cities of Colombia. Biomedica 30(1):65–71 SpanishCrossRefGoogle Scholar
  42. Zarante M, Sarmiento K, Mallarino C, Gracia G (2016) Description of Bogotá birth defects surveillance and follow-up program. J Registry Manag 43:116–121Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Boris Groisman
    • 1
  • Rosa Liascovich
    • 1
  • María Paz Bidondo
    • 1
  • Pablo Barbero
    • 1
  • Santiago Duarte
    • 1
  • Ana Laura Tellechea
    • 1
  • Jorge Holguín
    • 2
  • Catherine Rodríguez
    • 3
  • Paula Hurtado-Villa
    • 4
  • Natalia Caicedo
    • 4
  • Gabriela Botta
    • 5
  • Ignacio Zarante
    • 5
  1. 1.National Network of Congenital Anomalies of Argentina (RENAC), National Center of Medical Genetics, National Administration of Laboratories and Health Institutes, National Ministry of HealthCity of Buenos AiresArgentina
  2. 2.Secretaria de Salud Pública Municipal de CaliPontificia Universidad Javeriana CaliCaliColombia
  3. 3.Congenital Malformations Surveillance Programme of Bogotá, Secretaria de Salud de BogotáBogotáColombia
  4. 4.Congenital Birth Defects Surveillance Programme of CaliPontificia Universidad Javeriana CaliCaliColombia
  5. 5.Pontificia Universidad Javeriana BogotáCaliColombia

Personalised recommendations