Advertisement

Single nucleotide polymorphism markers for genotyping hawksbill turtles (Eretmochelys imbricata)

  • Shreya M. Banerjee
  • Lisa M. KomoroskeEmail author
  • Amy Frey
  • Brittany Hancock-Hanser
  • Phillip A. Morin
  • Frederick I. Archer
  • Suzanne Roden
  • Alexander Gaos
  • Michael J. Liles
  • Peter H. Dutton
Technical Note
  • 32 Downloads

Abstract

Assessing population connectivity and identifying conservation units are critical to formulating effective management plans for marine turtles. We combined a multiplexed targeted enrichment capture technique and high-throughput sequencing to discover single nucleotide polymorphisms (SNPs) and to genotype hawksbill turtles (Eretmochelys imbricata) to examine population structure. Our approach discovered 455 potential informative SNPs for hawksbill turtles. We optimized 25 of the 455 SNPs discovered and used them to identify preliminary evidence of hawksbill population structure, suggesting that these markers will be informative in discerning conservation units when applied to larger sample sizes in future studies.

Keywords

DNA capture array Sea turtle Conservation SNP Genotyping by sequencing 

Notes

Acknowledgements

We would like to thank Tammy Summers, David Graff, Alden Tagarino, Nancy Fitzsimmons, Neca Marcovaldi, Joca Thome, Brian Bowen, Jeanne Mortimer, Emma Harrison and George Balazs, Velkiss Gadea, Eduardo Altamirano, Didiher Chacon, Felipe Vallejo, Christina Miranda, Equilibrio Azul, Lauren Kurpita, Mark MacDonald, Sofía Chavarría, Neftaly Sánchez, Carlos Pacheco, Centro Tamar/ICMbio and Projeto Tamar/Fundação Pro Tamar, The Sea Turtle Conservancy, American Samoa Department of Marine and Wildlife Resources, CNMI Division of Fish and Wildlife & Department of Lands & Natural Resources and NOAA-Fisheries Pacific Islands Science Center, Fauna & Flora International, Latin American Sea Turtles, Hawaiian Island Hawksbill Project for sample contributions. We also are grateful to Steve Head and the TSRI DNA Array Core Facility for library sequencing and advice about the library preparation procedure. At the Southwest Fisheries Science Center, we thank Gabriela Serra-Valente and Amy Lanci for processing samples and Robin LeRoux, Amanda Bowman, and Vicki Pease for technical and logistical assistance, and Michael Jensen and Karen Martien for constructive feedback that improved the manuscript.

Funding

This study was funded by NOAA Fisheries (NMFS West Coast Regional Office and Southwest Fisheries Science Center).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12686_2019_1112_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 41 kb)
12686_2019_1112_MOESM2_ESM.xlsx (62 kb)
Supplementary material 2 (XLSX 61 kb)
12686_2019_1112_MOESM3_ESM.xlsx (38 kb)
Supplementary material 3 (XLSX 38 kb)
12686_2019_1112_MOESM4_ESM.png (10 kb)
Supplementary material 4 (PNG 10 kb)

References

  1. Archer F, Adams P, Schneiders B (2017) strataG: an R package for manipulating, summarizing, and analyzing population genetic data. Mol Ecol Resour 17:5–11CrossRefGoogle Scholar
  2. Dutton PH, Roden SE, Stewart KR, LaCasella EL, Tiwari M, Formia A et al (2013) Population stock structure of leatherback turtles (Dermochelys coriacea) in the Atlantic revealed using mtDNA and microsatellite markers. Conserv Genet 14:625–636CrossRefGoogle Scholar
  3. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  4. Gaos A, Lewison R, Liles M et al (2016) Hawksbill turtle terra incognita: conservation genetics of Eastern Pacific rookeries. Ecol Evol 6:1251–1264CrossRefGoogle Scholar
  5. Hancock-Hanser BL, Frey A, Leslie MS et al (2013) Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics. Mol Ecol Resour 13:254–268CrossRefGoogle Scholar
  6. Hendricks S, Anderson EC, Antao T, Bernatchez L et al (2018) Recent advances in conservation and population genomics data analysis. Evol Appl 11:1197–1211CrossRefGoogle Scholar
  7. Mortimer JA, Donnelly M, IUCN SSC Marine Turtle Specialist Group (2008) Eretmochelys imbricata. The IUCN red list of threatened species. Accessed 17 Apr 2019Google Scholar
  8. Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefGoogle Scholar
  9. Jones M, Good J (2016) Targeted capture in evolutionary and ecological genomics. Mol Ecol 25:185–202CrossRefGoogle Scholar
  10. Komoroske L, Miller M, O’Rourke S et al (2018) A versatile rapture (RAD-capture) platform for genotyping marine turtles. Mol Ecol Resour 19:497–511CrossRefGoogle Scholar
  11. LeRoux R, Dutton P, Abreu-Grobois F et al (2012) Re-examination of population structure and phylogeography of hawksbill turtles in the Wider Caribbean using longer mitochondrial DNA sequences. J Hered 103:806–820CrossRefGoogle Scholar
  12. Morin PA, McCarthy M (2007) Highly accurate SNP genotyping from historical and low-quality samples. Mol Ecol Notes 7:937–946CrossRefGoogle Scholar
  13. Morin PA, Luikart G, Wayne RK, SNP Workshop Group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216CrossRefGoogle Scholar
  14. Mullins RB, McKeown NJ, Sauer WHH et al (2018) Genomic analysis reveals multiple mismatches between biological and management units in yellowfin tuna (Thunnus albacares). ICES J Mar Sci 75:2145–2152CrossRefGoogle Scholar
  15. Nishizawa H, Joseph J, Chong YK (2016) Spatio-temporal patterns of mitochondrial DNA variation in hawksbill turtles (Eretmochelys imbricata) in Southeast Asia. J Exp Mar Biol Ecol 474:164–170CrossRefGoogle Scholar
  16. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  17. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  19. Vargas S, Jensen M, Ho S et al (2015) Phylogeography, genetic diversity, and management units of hawksbill turtles in the Indo-Pacific. J Hered 107:199–213CrossRefGoogle Scholar
  20. Zolgharnein H, Salari-Aliabadi MA, Forougmand AM et al (2001) Genetic population structure of Hawksbill turtle (Eretmochelys imbricta) using microsatellite analysis. Iran J Biotechnol 9:56–62Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shreya M. Banerjee
    • 1
  • Lisa M. Komoroske
    • 1
    • 2
    Email author
  • Amy Frey
    • 2
  • Brittany Hancock-Hanser
    • 2
  • Phillip A. Morin
    • 2
  • Frederick I. Archer
    • 2
  • Suzanne Roden
    • 2
  • Alexander Gaos
    • 2
    • 3
  • Michael J. Liles
    • 4
  • Peter H. Dutton
    • 2
  1. 1.Department of Environmental ConservationUniversity of Massachusetts, AmherstAmherstUSA
  2. 2.Southwest Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationLa JollaUSA
  3. 3.Joint Institute for Marine and Atmospheric Research, Pacific Islands Fisheries Science Center, National Marine Fisheries ServiceNational Oceanic and Atmospheric Administration, Marine Turtle Biology and Assessment ProgramHonoluluUSA
  4. 4.Asociación ProCosta, Residencial Prados de San LuisSan SalvadorEl Salvador

Personalised recommendations