Environmental DNA from avian residual saliva in fruits and its potential uses in population genetics

  • O. MongeEmail author
  • D. Dumas
  • I. Baus
Methods and Resources Article


Buccal cells are a valid source of vertebrate DNA for genetic analysis, typically collected with mouth swabs on captured individuals. Yet, advances in DNA storage and processing now permit recovering genomic material from traces of saliva in food remains. For example, the feeding habits of canopy-dwelling frugivorous birds, e.g. large macaws (Psittaciformes), could present an ideal opportunity to obtain environmental DNA (eDNA) from partially consumed fruits. We tested this by collecting tropical almond (Terminalia catappa) fruits, eaten and discarded by scarlet macaws (Ara macao), and processed them using three different collection/storage methods. We successfully isolated DNA molecules from macaw residual saliva in fruits. This genetic material allowed the amplification of 7 microsatellite markers and of the CHD region of the avian sex chromosomes using two different primer pairs. Macaw eDNA concentration (mean 12 ng/µl) was similar to the reported in other avian studies using buccal swabs but overall microsatellite (60% success) and CHD-gen (20% success) amplification was low. The best results were obtained for samples preserved in ethanol. We conclude that saliva eDNA in partially consumed food items is an underused source of non-invasive bird DNA for genetic analyses. Based on our results, we recommend that a combination of specialized collection swabs or ethanol stored swabs along with commercial DNA extraction kits be used. Protocols should be modified accordingly to reach a consistent level of individual identification and gender determination that closely matches traditional sampling.


Psittacidae Swab Non-invasive Genetic analysis PCR 



DNA Genotek Inc. kindly donated the Perfomagene™ PG-100 collection swabs used in this study. We want to acknowledge support given by the School of Biology at the University of Costa Rica for the elaboration of this project. IB thanks the Academic Exchange Programs of the Pontifical Catholic University of Chile and University of Costa Rica.


This research was elaborated under permit 111-B7-198 from the Vice-Rectory of Research of the University of Costa Rica.

Supplementary material

12686_2018_1074_MOESM1_ESM.docx (218 kb)
Supplementary material 1 (DOCX 217 KB)


  1. Arima H, Ohnishi N (2006) Usefulness of avian buccal cells for molecular sexing. Ornithol Sci 5:139–143CrossRefGoogle Scholar
  2. Arima H, Oka N, Baba Y, Sugawa H, Ota T (2014) Gender identification by calls and body size of the Streaked Shearwater examined by CHD genes. Ornithol Sci 13:9–17CrossRefGoogle Scholar
  3. Arnold AE, Andersen EM, Taylor MJ, Steidl RJ (2017) Using cytochrome b to identify nests and museum specimens of cryptic songbirds. Conserv Genet Resour 9:451–458CrossRefGoogle Scholar
  4. Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9:1279–1301CrossRefGoogle Scholar
  5. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367CrossRefGoogle Scholar
  6. Bosnjak J, Stevanov-Pavlovic M, Vucicevic M, Stevanovic J, Simeunovic P, Resanovic R, Stanimirovic Z (2013) Feasibility of non-invasive molecular method for sexing of parrots. Pakistan J Zool 45:715–720Google Scholar
  7. Brightsmith D, Villalobos E (2011) Parrot behavior at a Peruvian clay lick. Wilson J Ornithol 123:595–602CrossRefGoogle Scholar
  8. Brubaker JL, Karouna-Renier NK, Chen Y, Jenko K, Sprague DT, Henry PFP (2011) A noninvasive, direct real-time PCR method for sex determination in multiple avian species. Mol Ecol Resour 11:415–417CrossRefGoogle Scholar
  9. Bush KL, Vinsky MD, Aldridge CL, Paszkowski CA (2005) A comparison of sample types varying in invasiveness for use in DNA sex determination in an endangered population of greater Sage-Grouse (Centrocercus urophasianus). Conserv Genet 6:867–870CrossRefGoogle Scholar
  10. Bush KL, Aldridge C, Carpenter JE, Paszkowski CA, Boyce MS, Coltman DW (2010) Birds of a feather do not always lek together: genetic diversity and kinship structure of greater sage-grouse (Centrocercus urophasianus) in Alberta. Auk 127:343–353CrossRefGoogle Scholar
  11. Colussi S, Campia V, Righetti M, Scanzio T, Riina MV, Burioli EAV, Foglini C, Ingravalle F, Prearo M, Acutis PL (2017) Buccal swab: a tissue sampling method for refinement of experimental procedures involving rainbow trout. J Appl Ichthyol 33:515–519CrossRefGoogle Scholar
  12. Dai Y, Lin Q, Fang W, Zhou X, Chen X (2015) Noninvasive and nondestructive sampling for avian microsatellite genotyping: a case study on the vulnerable Chinese Egret (Egretta eulophotes). Avian Res 6:24CrossRefGoogle Scholar
  13. Dawson DA, Brekke P, dos Remedios N, Horsburgh GJ (2015) A marker suitable for sex-typing birds from degraded samples. Conserv Genet Resour 7:337–343CrossRefGoogle Scholar
  14. Eiben K, Fay R, Jung A, Rasmussen A, Russell J (2017) Sex determination of the boreal owl (Aegolius funereus) using buccal swabs and improved molecular techniques. J Raptor Res 51:68–71CrossRefGoogle Scholar
  15. Emura S, Okumura T, Chen H (2012) Scanning electron microscopic study on the tongue in the scarlet macaw (Ara macao). Okajimas Folia Anat Jpn 89:57–60CrossRefGoogle Scholar
  16. Fourcade Y, Richardson DS, Keišs O, Budka M, Green RE, Fokin S, Secondi J (2016) Corncrake conservation genetics at a European scale: the impact of biogeographical and anthropological processes. Biol Conserv 198:210–219CrossRefGoogle Scholar
  17. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  18. Gebhardt KJ, Waits LP (2008a) Cross-species amplification and optimization of microsatellite markers for use in six Neotropical parrots. Mol Ecol Resour 8:835–839CrossRefGoogle Scholar
  19. Gebhardt KJ, Waits LP (2008b) High error rates for avian molecular sex identification primer sets applied to molted feathers. J Field Ornithol 79:286–292CrossRefGoogle Scholar
  20. Gebhardt KJ, Brightsmith D, Powell G, Waits LP (2009) Molted feathers from clay licks in Peru provide DNA for three large macaws (Ara ararauna. A. chloropterus, and A. macao). J Field Ornithol 80:183–192CrossRefGoogle Scholar
  21. Griffiths R, Double MC, Orr K, Dawson RJ (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075CrossRefGoogle Scholar
  22. Handel CM, Pajot LM, Talbot SL, Sage GK (2006) Use of buccal swabs for sampling DNA from nestling and adult birds. Wildl Soc Bull 34:1094–1100CrossRefGoogle Scholar
  23. Harms V, Nowak C, Carl S, Muñoz-Fuentes V (2015) Experimental evaluation of genetic predator identification from saliva traces on wildlife kills. J Mammal 96:138–143CrossRefGoogle Scholar
  24. Henn JJ, McCoy MB, Vaughan CS (2014) Beach almond (Terminalia catappa, Combretaceae) seed production and predation by scarlet macaws (Ara macao) and variegated squirrels (Sciurus variegatoides). Rev Biol Trop 62:929–938CrossRefGoogle Scholar
  25. Innes J, King C, Bartlam S, Forrester G, Howitt R (2015) Predator control improves nesting success in Waikato forest fragments. N Z J Ecol 39:245–253Google Scholar
  26. Lee A, Brightsmith DJ, Vargas MP, Leon KQ, Mejia AJ, Marsden SJ (2014) Diet and geophagy across a western Amazonian parrot assemblage. Biotropica 46:322–330CrossRefGoogle Scholar
  27. Lucentini L, Gigliarelli L, Puletti ME, Volpi L, Panara F (2010) Comparison of conservative DNA extraction methods for two Galliformes: grey partridge (Perdix perdix italica, Hartert 1917) and red-legged partridge (Alectoris rufa, Linnaeus 1758). Conserv Genet Resour 2:381–384CrossRefGoogle Scholar
  28. Meyers JM (1994) Improved capture techniques for psittacines. Wildl Soc Bull 22:511–516Google Scholar
  29. Miño CI, Dantas de Souza E, Moralez-Silva E, Valdes TA, Rodrigues VLCC, Lama SND (2017) Use of noninvasive ‘bug-eggs’ to enable comparative inferences on genetic mating system with and without parental information: a study in a cattle egret colony. PloS ONE 12:e0183153CrossRefGoogle Scholar
  30. Monge O, Schmidt K, Vaughan C, Gutiérrez-Espeleta G (2016) Genetic patterns and conservation of the Scarlet Macaw (Ara macao) in Costa Rica. Conserv Genet 17:745–750CrossRefGoogle Scholar
  31. Myers M, Vaughan C (2004) Movement and behavior of scarlet macaws (Ara macao) during the post-fledging dependence period: implications for in situ versus ex situ management. Biol Conserv 118:411–420CrossRefGoogle Scholar
  32. Nemeth N, Vaughan C (2004) Feeding observations on Scarlet Macaw (Ara macao) in Costa Rica. Cotinga 21:71–72Google Scholar
  33. Nota Y, Tekanaka O (1999) DNA extraction from urine and sex identification of birds. Mol Ecol 8:1235–1238CrossRefGoogle Scholar
  34. Oberbauer AM, Grossman DI, Eggleston ML, Irion DN, Schaffer AL, Pedersen NC, Belanger JM (2003) Alternatives to blood as a source of DNA for large-scale scanning studies of canine genome linkages. Vet Res Commun 27:27–38CrossRefGoogle Scholar
  35. Olah G, Heinsohn RG, Brightsmith DJ, Espinoza JR, Peakall R (2016) Validation of non-invasive genetic tagging in two large macaw species (Ara macao and A. chloropterus) of the Peruvian Amazon. Conserv Genet Resour 8:499–509CrossRefGoogle Scholar
  36. Pearce JM, Fields RL, Scribner KT (1997) Nest materials as a source of genetic data for avian ecological studies. J Field Ornithol 68:471–481Google Scholar
  37. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:846–847CrossRefGoogle Scholar
  38. Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113:1014–1026CrossRefGoogle Scholar
  39. Seki SI (2003) Molecular sexing of individual Ryukyu Robins Erithacus komadori using buccal cells as a non-invasive source of DNA. Ornithol Sci 2:135–137CrossRefGoogle Scholar
  40. Steffens K, Sanders MD, Gleeson DM, Pullen KM, Stowe CJ (2012) Identification of predators at black-fronted tern Chlidonias albostriatus nests, using mtDNA analysis and digital video recorders. NZJ Ecol 36:48–55Google Scholar
  41. Sumasgutner P, Nemeth E, Tebb G, Krenn HK, Gamauf A (2014) Hard times in the city—attractive nest sites but insufficient food supply lead to low reproduction rates in a bird of prey. Front Zool 11:48CrossRefGoogle Scholar
  42. Taberlet P, Bouvet J (1992) Bear conservation genetics. Nature 358:197CrossRefGoogle Scholar
  43. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327CrossRefGoogle Scholar
  44. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Mol Ecol 21:1789–1793CrossRefGoogle Scholar
  45. Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PloS ONE 7:e41732CrossRefGoogle Scholar
  46. van Hoppe MJC, Dy MAV, van den Einden M, Iyengar A (2016) SkydancerPlex: a novel STR multiplex validated for forensic use in the hen harrier (Circus cyaneus). Forensic Sci Int Genet 22:100–109CrossRefGoogle Scholar
  47. Vaughan C, Nemeth N, Marineros L (2006) Scarlet macaw, Ara macao, (Psittaciformes: Psittacidae) diet in Central Pacific Costa Rica. Rev Biol Trop 54:919–926PubMedGoogle Scholar
  48. Wellbrock AHJ, Bauch C, Rozman J, Witte K (2012) Buccal swabs as a reliable source of DNA for sexing young and adult Common Swifts (Apus apus). J Ornithol 153:991–994CrossRefGoogle Scholar
  49. Wheat R, Allen JM, Miller SDL, Wilmers CC, Levi T (2016) Environmental DNA from residual saliva for efficient noninvasive genetic monitoring of brown bears (Ursus arctos). PloS ONE 11:e0165259CrossRefGoogle Scholar
  50. Yannic G, Sermier R, Aebischer A, Gavrilo MV, Gilg O, Miljeteig C, Sabard B, Strøm H, Pouivé E, Broquet T (2011) Description of microsatellite markers and genotyping performances using feathers and buccal swabs for the Ivory gull (Pagophila eburnea). Mol Ecol Resour 11:877–889CrossRefGoogle Scholar
  51. Yannic G, Broquet T, Strøm H, Aebischer A, Dufresnes C, Gavrilo MV, Gilchrist HG, Mallory ML, Morrison RIG, Sabard B, Sermier R, Gilg O (2016) Genetic and morphological sex identification methods reveal a male-biased sex ratio in the Ivory Gull Pagophila eburnea. J Ornithol 157:861–873CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratorio de Genética de la ConservaciónUniversidad de Costa RicaSan Pedro de Montes de OcaCosta Rica
  2. 2.Ingeniería en Biotecnología, Escuela de BiologíaInstituto Tecnológico de Costa RicaCartagoCosta Rica
  3. 3.Departamento de Ecología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations