Advertisement

Conservation Genetics Resources

, Volume 11, Issue 1, pp 35–38 | Cite as

A targeted gene approach to SNP discovery in the blue (Connochaetes taurinus) and black wildebeest (C. gnou)

  • Anna M. van Wyk
  • Christiaan Labuschagne
  • Anna S. Kropff
  • Antoinette Kotzé
  • J. Paul Grobler
  • Bettine Jansen van Vuuren
  • Desiré L. DaltonEmail author
Technical Note

Abstract

We report the characterization of 23 single nucleotide polymorphism (SNP) markers for the blue (Connochaetes taurinus) and black wildebeest (C. gnou) based on a targeted gene approach. The polymorphisms of these SNP loci were assessed using a captive population of blue and black wildebeest comprising 30 individuals. The minor allele frequency per SNP ranged from 0.000 to 0.458 and the observed and expected heterozygosity ranged from 0.000 to 0.636 and from 0.000 to 0.496, respectively. An understanding of genetic population structure is required to effectively formulate strategies for conservation and/or management. These SNP markers could be employed to provide estimates of parameters such as population structure, relatedness, hybridisation and current and historical gene flow.

Keywords

SNP Blue wildebeest Connochaetes taurinus Black wildebeest Connochaetes gnou 

Notes

Acknowledgements

We thank the International Foundation of Science (IFS); Grant Number B6411 and the National Research Foundation (NRF) Technology and Human Resources for Industry Programme (THRIP); Grant Number TP2011073100007 for research funding.

References

  1. Ackermann RR, Brink JS, Vrahimis S, De Klerk B (2010) Hybrid wildebeest (Artiodactyla: Bovidae) provide further evidence for shared signatures of admixture in mammalian crania. S Afr J Sci 106:1–4.  https://doi.org/10.4102/sajs.v106i11/12.423 CrossRefGoogle Scholar
  2. Aitken N, Smith S, Schwarz C, Morin PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 13:1423–1431.  https://doi.org/10.1111/j.1365-294X.2004.02159.x CrossRefPubMedGoogle Scholar
  3. Brink JS (1993) Postcranial evidence for the evolution of the Black Wildebeest, Connochaetes gnou: an exploratory study. Palaeontol Afr 30:61–69Google Scholar
  4. Brink J (2005) The evolution of the black wildebeest (Connochaetes gnou) and modern large mammal faunas of central southern Africa, University of StellenboschGoogle Scholar
  5. Buckland RA, Evans HJ (1978) Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding. Cytogenet Cell Genet 21:42–63CrossRefPubMedGoogle Scholar
  6. Corbet SW, Robinson TJ (1991) Genetic divergence in South African Wildebeest: comparative cytogenetics and analysis of mitochondrial DNA. J Hered 82:447–452CrossRefPubMedGoogle Scholar
  7. De Klerk B (2007) An osteological documentation of hybrid wildebeest and its bearing on black wildebeest (Connochaetes gnou) evolution, University of the WitwatersrandGoogle Scholar
  8. Fabricius C, Lowry D, Van den Berg P (1988) Fecund black wildebeest x blue wildebeest hybrids. S Afr J Wildl Res 18:35–37Google Scholar
  9. Gentry A (1978) In: Maglio VJ, Cooke HBS (eds) Evolution of African mammals. Harvard University Press, CambridgeGoogle Scholar
  10. Grobler JP, Rushworth I, Brink JS et al (2011) Management of hybridization in an endemic species: Decision making in the face of imperfect information in the case of the black wildebeest-Connochaetes gnou. Eur J Wildl Res 57:997–1006.  https://doi.org/10.1007/s10344-011-0567-1 CrossRefGoogle Scholar
  11. Li S, Wan H, Ji H et al (2009) SNP discovery based on CATS and genotyping in the finless porpoise (Neophocaena phocaenoides). Conserv Genet 10:2013–2019.  https://doi.org/10.1007/s10592-009-9882-4 CrossRefGoogle Scholar
  12. Morin P, Aitken N, Rubio-Cisneros N, et al (2007) Characterization of 18 SNP markers for sperm whale (Physeter macrocephalus). Mol Ecol Notes 7:626–630.  https://doi.org/10.1111/j.1471-8286.2006.01654.x CrossRefGoogle Scholar
  13. Olden JD, Poff NL, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24.  https://doi.org/10.1016/j.tree.2003.09.010 CrossRefPubMedGoogle Scholar
  14. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49(6): 1280–1283CrossRefPubMedGoogle Scholar
  15. Rhymer JM, Simberloff D (1996) extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109.  https://doi.org/10.1146/annurev.ecolsys.27.1.83 CrossRefGoogle Scholar
  16. Skinner JD, Chimimba CT (2005) The mammals of the Southern African subregion, 3rd edn. Cambridge University Press, Cape TownCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Anna M. van Wyk
    • 1
    • 2
  • Christiaan Labuschagne
    • 3
  • Anna S. Kropff
    • 2
  • Antoinette Kotzé
    • 1
    • 2
  • J. Paul Grobler
    • 1
  • Bettine Jansen van Vuuren
    • 4
  • Desiré L. Dalton
    • 1
    • 2
    Email author
  1. 1.Department of GeneticsUniversity of the Free StateBloemfonteinSouth Africa
  2. 2.National Zoological Gardens of South AfricaPretoriaSouth Africa
  3. 3.Inqaba Biotechnical Industries (Pty) LtdHatfieldSouth Africa
  4. 4.Centre for Ecological Genomics and Wildlife Conservation, Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa

Personalised recommendations