Conservation Genetics Resources

, Volume 10, Issue 4, pp 779–781 | Cite as

Development of a set of SNP markers for population genetics studies of Ipe (Handroanthus sp.), a valuable tree genus from Latin America

  • Barbara R. V. Meyer-Sand
  • Celine Blanc-Jolivet
  • Malte Mader
  • Kathelyn Paredes-Villanueva
  • Niklas Tysklind
  • Alexandre M. Sebbenn
  • Erwan Guichoux
  • Bernd Degen
Technical Note


A combination of restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing was used for the development of single nucleotide polymorphisms (SNP) and INDEL (insertion/deletions) genetic markers for Ipe (Handroanthus sp.). Of the 402 putative loci identified, 389 SNPs and INDELs (315 nuclear SPNs, six chloroplast INDELs, 15 chloroplast SNPs, 12 mitochondrial INDELs and 41 mitochondrial SNPs) were successfully genotyped at 93 individuals from Brazil, Bolivia and French Guiana using a MassARRAY® iPLEX™ platform. This set of markers will be invaluable for population genetics, phylogeography and DNA fingerprinting studies.


Handroanthus sp. Single nucleotide polymorphism MassARRAY 



This research was supported by the German Federal Ministry of Food and Agriculture in the frame of the “Large scale project on genetic timber verification”. Genotyping was performed at the Genomic and Sequencing Facility of Bordeaux (grants from the Conseil Regional d’Aquitaine Nos 20030304002FA and 20040305003FA, the European Union, FEDER No 2003227 and Investissements d’avenir, Nos ANR-10-EQPX-16-01 and CEBA: ANR-10-LABX-25-01 to the UMR EcoFoG). We would like to thank the Conselho Nacional de Ciencia e Tecnologia (CAPES) (Mater scholarship at the UNESP/FEIS to B.R.V.M-S), the Chico Mendes Biodiversity Institute (authorizations Nos 47960 and 49369 for sample transportation), FLONA do Jamari, AMATA Company, FLONA Amapá, FLONA de Tapajós, FLONA do Carajás, RESEX Chico Mendes, RESEX Tapajós - Arapins in Brazil, the Museo de Historia Natural Noel Kempff Mercado in Bolivia, as well as the Office National des Forêts in French Guiana for their support in the field.

Supplementary material

12686_2017_928_MOESM1_ESM.docx (78 kb)
Supplementary material 1 (DOCX 77 KB)
12686_2017_928_MOESM2_ESM.docx (105 kb)
Supplementary material 2 (DOCX 105 KB)
12686_2017_928_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 20 KB)


  1. Blanc-Jolivet C, Kersten B, Bourland N, Guichoux E, Delcamp A, Doucet J-L, Degen B (2017a). Development of nuclear SNP markers for the timber tracking of the African tree species Sapelli, Entandrophragma cylindricum. Conserv Genet Resour. CrossRefGoogle Scholar
  2. Blanc-Jolivet C, Kersten B, Daïnou K, Hardy O, Guichoux E, Delcamp A, Degen B (2017b) Development of nuclear SNP markers for genetic tracking of Iroko, Milicia excelsa and Milicia regia. Conserv Genet Resour. CrossRefGoogle Scholar
  3. Braga AC, Reis AMM, Leoi LT, Pereira RW, Collevatti RG (2007) Development and characterization of microsatellite markers for the tropical tree species Tabebuia aurea (Bignoniaceae). Mol Ecol Notes 7:53–56CrossRefGoogle Scholar
  4. Dumolin S, Demesure B, Pettit R (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefGoogle Scholar
  5. Goudet J (2002) Fstat (Version a computer program to calculate F-statistics. J Heredity 86:485–486CrossRefGoogle Scholar
  6. Grose SO, Olmstead RG (2007) Evolution of a charismatic neotropical clade: molecular phylogeny of Tabebuia s. l. crescentieae, and allied genera (Bignoniaceae). Syst Bot 32:650–659CrossRefGoogle Scholar
  7. Jardine DI, Blanc-Jolivet C, Dixon RRM, Dormontt EE, Dunker B, Gerlach J et al (2016) Development of SNP markers for Ayous (Triplochiton scleroxylon K. Schum) an economically important tree species from tropical West and Central Africa. Conserv Genet Resour 8(2):129–139CrossRefGoogle Scholar
  8. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248CrossRefGoogle Scholar
  9. Pakull B, Mader M, Kersten B, Ekue MRM, Dipelet UGB, Paulini M et al (2016) Development of nuclear, chloroplast and mitochondrial SNP markers for Khaya sp. Conserv Genet Resour 8(3):283–297CrossRefGoogle Scholar
  10. Schulze M, Grogan J, Uhl C, Lentini M, Vidal E (2008) Evaluating Ipê (Tabebuia, Bignoniaceae) logging in amazonia: Sustainable management or catalyst for forest degradation? Biol Conserv 141:2071–2085CrossRefGoogle Scholar
  11. Straub SC, Parks M, Weitemier K, fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Barbara R. V. Meyer-Sand
    • 1
  • Celine Blanc-Jolivet
    • 2
  • Malte Mader
    • 2
  • Kathelyn Paredes-Villanueva
    • 3
  • Niklas Tysklind
    • 4
  • Alexandre M. Sebbenn
    • 5
  • Erwan Guichoux
    • 6
  • Bernd Degen
    • 2
  1. 1.Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, Faculdade de Engenharia de Ilha SolteiraUniversidade Estadual PaulistaIlha SolteiraBrazil
  2. 2.Thünen Institute of Forest GeneticsGrosshansdorfGermany
  3. 3.Carrera de Ingeniería Forestal, Laboratorio de Dendrocronología, Facultad de Ciencias AgrícolasUniversidad Autónoma Gabriel René MorenoSanta CruzBolivia
  4. 4.INRA, UMR0745 EcoFoG, AgroParisTech, Cirad, CNRSUniversité des Antilles, Université de GuyaneKourou CedexFrance
  5. 5.Instituto Florestal de São PauloSão PauloBrazil
  6. 6.Plateforme Génome Transcriptome de BordeauxINRA PierrotonCestasFrance

Personalised recommendations