Advertisement

Conservation Genetics Resources

, Volume 10, Issue 4, pp 859–865 | Cite as

Quantitative PCR assays for detection of five arctic fish species: Lota lota, Cottus cognatus, Salvelinus alpinus, Salvelinus malma, and Thymallus arcticus from environmental DNA

  • Torrey W. RodgersEmail author
  • John R. Olson
  • Stephen L. Klobucar
  • Karen E. Mock
Methods and Resources Article

Abstract

The North Slope of Alaska contains arctic fish populations that are important for subsistence of local human populations, and are under threat from natural resource extraction and climate change. We designed and evaluated four quantitative PCR assays for the detection of environmental DNA from five Alaskan fish species present on the North Slope of Alaska: burbot (Lota lota), arctic char (Salvelinus alpinus), Dolly Varden (Salvelinus malma), arctic grayling (Thymallus arcticus), and slimy sculpin (Cottus cognatus). All assays were designed and tested for species specificity and sensitivity, and all assays detected target species from filtered water samples collected from the field. These assays will enable efficient and economical detection and monitoring of these species in lakes and rivers. This in turn will provide managers with improved knowledge of current distributions and future range shifts associated with climate and development threats, enabling more timely management.

Keywords

Alaska North Slope eDNA Species detection 

Notes

Acknowledgements

We would like to thank Greta Burkart and the USFWS Arctic National Wildlife Refuge and Alaska Refuges Inventory and Monitoring Program for management direction and funding. We would also like to thank Andres Lopes and the University of Alaska Museum for providing tissue specimens for sequencing, and Matthew Whitman and Phaedra Budy for providing tissue specimens and eDNA samples. This work was funded by NASA Biodiversity and Ecological Forecasting program Grant NNX14AC40G.

Supplementary material

12686_2017_883_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 KB)
12686_2017_883_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 KB)

References

  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press, CambridgeGoogle Scholar
  2. Budy P, Luecke C (2014) Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach. Oecologia 176:81–94. doi: 10.1007/s00442-014-2993-8 CrossRefGoogle Scholar
  3. Carim KJ, Dysthe JCS, Young MK, McKelvey KS, Schwartz MK (2016) An environmental DNA assay for detecting arctic grayling in the upper Missouri River basin North America. Conserv Genet Resour 8:197–199. doi: 10.1007/s12686-016-0531-1 CrossRefGoogle Scholar
  4. Council NR (2003) Cumulative environmental effects of oil and gas activities on Alaska’s North Slope. The National Academies Press, Washington, DC. doi: 10.17226/10639 CrossRefGoogle Scholar
  5. Courtney MB, Scanlon BS, Rikardsen AH, Seitz AC (2016) Marine behavior and dispersal of an important subsistence fish in Arctic Alaska, the Dolly Varden. Environ Biol Fishes 99:209–222. doi: 10.1007/s10641-015-0468-3 CrossRefGoogle Scholar
  6. Crete-Lafreniere A, Weir LK, Bernatchez L (2012) Framing the Salmonidae Family phylogenetic portrait: a more complete picture from increased taxon sampling. PLoS ONE. doi: 10.1371/journal.pone.0046662 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gardunio EI, Myrick CA, Ridenour RA, Keith RM, Amadio CJ (2011) Invasion of illegally introduced burbot in the upper Colorado River Basin, USA. J Appl Ichthyol 27:36–42. doi: 10.1111/j.1439-0426.2011.01841.x CrossRefGoogle Scholar
  8. Himes-Cornell A, Kasperski S (2015) Assessing climate change vulnerability in Alaska’s fishing communities. Fish Res 162:1–11. doi: 10.1016/j.fishres.2014.09.010 CrossRefGoogle Scholar
  9. Jane SF et al (2015) Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Mol Ecol Resour 15:216–227. doi: 10.1111/1755-0998.12285 CrossRefGoogle Scholar
  10. Janosik AM, Johnston CE (2015) Environmental DNA as an effective tool for detection of imperiled fishes. Environ Biol Fishes 98:1889–1893. doi: 10.1007/s10641-015-0405-5 CrossRefGoogle Scholar
  11. Jerde CL, Mahon AR, Chadderton WL, Lodge DM (2011) “Sight-unseen” detection of rare aquatic species using environmental. DNA Conserv Lett 4:150–157. doi: 10.1111/j.1755-263X.2010.00158.x CrossRefGoogle Scholar
  12. Moerlein KJ, Carothers C (2012) Total environment of change: impacts of climate change and social transitions on subsistence fisheries in Northwest Alaska. Ecol Soc. doi: 10.5751/es-04543-170110 CrossRefGoogle Scholar
  13. Reist JD et al (2006) General effects of climate change on Arctic fishes fish populations. AMBIO 35:370–380. doi: 10.1579/0044-7447 CrossRefGoogle Scholar
  14. Riordan B, Verbyla D, McGuire AD (2006) Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J Geophys Res. doi: 10.1029/2005jg000150 CrossRefGoogle Scholar
  15. Rodgers TW (2017) Proper fin-clip sample collection for molecular analyses in the age of eDNA. J Fish Biol. doi: 10.1111/jfb.13485 CrossRefGoogle Scholar
  16. Stewart BC, Kunkel KE, Stevens LE, Sun L, Walsh JE (2013) Regional climate trends and scenarios for the U.S. national climate assessment: part 7—climate of Alaska NOAA Technical Report NESDIS, pp 142–147Google Scholar
  17. Takahara T, Minamoto T, Doi H (2013) Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE. doi: 10.1371/journal.pone.0056584 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Taylor EB, Lowery E, Lilliestrale A, Elz A, Quinn TP (2008) Genetic analysis of sympatric char populations in western Alaska: Arctic char (Salvelinus alpinus) and Dolly Varden (Salvelinus malma) are not two sides of the same coin. J Evol Biol 21:1609–1625. doi: 10.1111/j.1420-9101.2008.01603.x CrossRefGoogle Scholar
  19. Wilcox TM, McKelvey KS, Young MK, Jane SF, Lowe WH, Whiteley AR, Schwartz MK (2013) Robust detection of rare species using environmental DNA: the importance of primer specificity. PLoS ONE. doi: 10.1371/journal.pone.0059520 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wilcox TM et al (2016) Understanding environmental DNA detection probabilities: a case study using a stream-dwelling char Salvelinus fontinalis. Biol Conserv 194:209–216. doi: 10.1016/j.biocon.2015.12.023 CrossRefGoogle Scholar
  21. Wright ES, Yilmaz LS, Ram S, Gasser JM, Harrington GW, Noguera DR (2014) Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates. Environ Microbiol 16:1354–1365. doi: 10.1111/1462-2920.12259 CrossRefGoogle Scholar
  22. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134. doi: 10.1186/1471-2105-13-134 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Torrey W. Rodgers
    • 1
    Email author
  • John R. Olson
    • 2
  • Stephen L. Klobucar
    • 3
  • Karen E. Mock
    • 1
  1. 1.Department of Wildland ResourcesUtah State UniversityLoganUSA
  2. 2.School of Natural SciencesCalifornia State University Monterey BaySeasideUSA
  3. 3.Department of Watershed Sciences and The Ecology CenterUtah State UniversityLoganUSA

Personalised recommendations