Advertisement

Conservation Genetics Resources

, Volume 9, Issue 4, pp 635–638 | Cite as

The complete chloroplast genomes of Adenolobus garipensis and Cercis glabra (Cercidoideae, Fabaceae)

  • Yin-Huan Wang
  • Hong Wang
  • Ting-Shuang YiEmail author
  • Yue-Hua WangEmail author
Technical Note

Abstract

The complete chloroplast genomes (plastomes) of Adenolobus garipensis (E. Mey.) Torre & Hillc. and Cercis glabra Pampanini (Cercidoideae, Fabaceae) were reported in this study. The plastomes of the two species were 151,705 and 159,181 bp in length, respectively. The plastomes of both species presented quadripartite structure and comprised 111 unique genes including 77 protein-coding genes, 30 tRNAs and 4 rRNAs. The overall GC content were 36.9 and 36.2%, respectively. The phylogenetic analysis based on plastomes resolved Cercidoideae as the basal lineage in Fabaceae phylogeny. The complete plastomes of A. garipensis and C. glabra will provide a valuable basis for further study on genetic diversification, evolution and conservation of Cercidoideae.

Keywords

Plastome Adenolobus garipensis Cercis glabra Cercidoideae Fabaceae Phylogenetic relationship 

Notes

Acknowledgements

We appreciate funding by the grant from the Talent Project of Yunnan Province (No. 2011CI042), and permission to collect samples from Kunming Botanic Garden and Kirstenbosch Botanical Garden.

Funding

This study was funded by grant from the Talent Project of Yunnan Province (No. 2011CI042).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12686_2017_744_MOESM1_ESM.pdf (12 kb)
Supplementary material 1 (PDF 12 KB)
12686_2017_744_MOESM2_ESM.pdf (9 kb)
Supplementary material 2 (PDF 8 KB)
12686_2017_744_MOESM3_ESM.pdf (342 kb)
Supplementary material 3 (PDF 342 KB)
12686_2017_744_MOESM4_ESM.pdf (34 kb)
Supplementary material 4 (PDF 34 KB)

References

  1. Chen TC, Zhang DX, Larsen SS, Michael AV (2010) Cercis Linnaeus. In: Wu ZY, Raven PH (eds) Flora of China, vol 10. Science Press & Missouri Botanical Garden Press, Beijing, pp 5–6Google Scholar
  2. Fritsch PW, Cruz BC (2012) Phylogeny of Cercis based on DNA sequences of nuclear ITS and four plastid regions: implications for transatlantic historical biogeography. Mol Phylogen Evol 62:816–825CrossRefGoogle Scholar
  3. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefPubMedPubMedCentralGoogle Scholar
  4. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  5. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  6. Legume Phylogeny Working Group (LPWG) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77CrossRefGoogle Scholar
  7. Lewis GP, Schrire BD, Mackinder BA, Lock M (2005) Legumes of the World. Royal Botanic Gardens, KewGoogle Scholar
  8. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581CrossRefPubMedPubMedCentralGoogle Scholar
  9. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE), 14–14 Nov 2010, pp 1–8Google Scholar
  10. Nadler JD, Pooler M, Olsen RT, Coleman GD (2012) In vitro induction of polyploidy in Cercis glabra Pamp. Sci Hortic 148:126–130CrossRefGoogle Scholar
  11. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689CrossRefPubMedPubMedCentralGoogle Scholar
  12. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefPubMedPubMedCentralGoogle Scholar
  13. Wang YH, Qu XJ, Chen SY, Li DZ, Yi TS (2017) Plastomes of Mimosoideae: structural and size variation, sequence divergence, and phylogenetic implication. Tree Genet Genom 13:41CrossRefGoogle Scholar
  14. Wick RR, Schultz MB, Zobel J, Holt KE (2015) Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–3352CrossRefPubMedPubMedCentralGoogle Scholar
  15. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255CrossRefPubMedGoogle Scholar
  16. Yang JB, Li DZ, Li HT (2014) Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour 14:1024–1031CrossRefPubMedGoogle Scholar
  17. Zhang T, Zeng CX, Yang JB, Li HT, Li DZ (2016) Fifteen novel universal primer pairs for sequencing whole chloroplast genomes and a primer pair for nuclear ribosomal DNAs. J Syst Evol 54:219–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Life SciencesYunnan UniversityKunmingChina
  2. 2.Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  3. 3.Germplasm Bank of Wild Species, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  4. 4.Kunming College of Life SciencesUniversity of Chinese Academy of SciencesKunmingChina

Personalised recommendations