Advertisement

Conservation Genetics Resources

, Volume 8, Issue 2, pp 129–139 | Cite as

Development of SNP markers for Ayous (Triplochiton scleroxylon K. Schum) an economically important tree species from tropical West and Central Africa

  • D. I. Jardine
  • C. Blanc-Jolivet
  • R. R. M. Dixon
  • E. E. Dormontt
  • B. Dunker
  • J. Gerlach
  • B. Kersten
  • K.-J. van Dijk
  • B. Degen
  • A. J. Lowe
Technical Note

Abstract

182 SNP markers were developed for Ayous (Triplochiton scleroxylon K. Schum) by incorporating information from two next generation sequencing approaches (RADseq Floragenex and AFLPseq IonTorrent PGM) into a single genotyping panel for MassARRAY® iPLEX™. This set of markers was successfully used to genotype 753 individuals from 43 populations in five Tropical West and Central African Countries. These loci have an expected heterozygosity range of 0.007–0.501 and F ST from 0 to 0.306.

Keywords

Single nucleotide polymorphism MassARRAY Obeche Timber tracking Cameroon Congo Ghana 

Notes

Acknowledgments

The work was financially supported by the International Tropical Timber Organization (Project PD 620/11 Rev.1) and the Australian Research Council (Project LP120100648). The TIFG approach for loci screening was supported by funding from the Conseil Regional d’Aquitaine (Nos. 20030304002FA and 20040305003FA), European Union, FEDER (No. 2003227) and from Investissements d’avenir, Convention attributive d’aide (No. ANR-10-EQPX-16-01).

Supplementary material

12686_2016_529_MOESM1_ESM.docx (105 kb)
Supplementary material 1 (DOCX 105 kb)

References

  1. Akinnagbe A (2008) Genetic variation in Mansonia altissima A. Chev. and Triplochiton scleroxylon K. Schum under different regimes of human impact in Akure Forest Reserve, Nigeria. Dissertation, University of GöttingenGoogle Scholar
  2. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bosu PP, Krampah E (2005) Triplochiton scleroxylon K. Schum In: Louppe, D Oteng-Amoako AA, Brink M (eds) PROTA. (www.prota4u.org/search.asp). Accessed 12 Dec 2015
  4. Degen B, Henry B (2015) Verifying timber in Africa. In: Carillo R (ed) ITTO tropical forest update 24(1):8–10Google Scholar
  5. Dormontt EE, Boner M, Braun B, Breulmann G, Degen B, Espinoza E, Gardner S, Guillery P, Hermanson JC, Koch G (2015) Forensic timber identification: it’s time to integrate disciplines to combat illegal logging. Biol Conserv 191:790–798CrossRefGoogle Scholar
  6. Dumolin S, Demesure B, Petit R (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefPubMedGoogle Scholar
  7. Hall JB, Bada S (1979) The distribution and ecology of Obeche (Triplochiton scleroxylon). J Ecol 67:543–564CrossRefGoogle Scholar
  8. Hardy OJ, Born C, Budde K, Daïnou K, Dauby G, Duminil J, Ewédjé E-EB, Gomez C, Heuertz M, Koffi GK (2013) Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. CR Geosci 345:284–296CrossRefGoogle Scholar
  9. Igboanugo ABI, Iversen P (2004) Conservation and use of Triplochiton scleroxylon in moist West Africa. In: Iversen P, Sigaud P, France-Lanord M (eds) Forest Genetic Resources 31:50–52Google Scholar
  10. ITTO (2015) Biennial review and assessment of the world timber situation 2013–2014. Appendix 3:125–187Google Scholar
  11. Jardine D, Dormontt E, van Dijk K-J, Dixon R, Dunker B, Lowe A (2015) A set of 204 SNP and INDEL markers for Bigleaf maple (Acer macrophyllum Pursch). Conservation Genetics Resources 7:797–801CrossRefGoogle Scholar
  12. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  13. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree database: a tree reference and selection guide. Version 4.0. (www.worldagroforestry.org/af/treedb/). Accessed 12 Dec 2015
  14. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  15. Slavov G, Nipper R, Robson P, Farrar K, Allison G, Bosch M, Clifton-Brown J, Donnison I, Jensen E (2014) Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytol 201:1227–1239CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • D. I. Jardine
    • 1
  • C. Blanc-Jolivet
    • 2
  • R. R. M. Dixon
    • 1
  • E. E. Dormontt
    • 1
  • B. Dunker
    • 1
  • J. Gerlach
    • 1
  • B. Kersten
    • 2
  • K.-J. van Dijk
    • 1
  • B. Degen
    • 2
  • A. J. Lowe
    • 1
  1. 1.School of Biological ScienceUniversity of AdelaideAdelaideAustralia
  2. 2.Thünen Institute of Forest GeneticsGroßhansdorfGermany

Personalised recommendations