Conservation Genetics Resources

, Volume 8, Issue 2, pp 91–95 | Cite as

A novel microsatellite multiplex assay for the endangered Hawaiian monk seal (Neomonachus schauinslandi)

  • A. Nicole Mihnovets
  • Jennifer K. Schultz
  • Claudia Wultsch
  • Charles L. Littnan
  • George Amato
Technical Note

Abstract

The Hawaiian monk seal (Neomonachus schauinslandi) is endemic to the Hawaiian archipelago and is among the most endangered marine mammal species in the world. Prior studies used mitochondrial and microsatellite markers to investigate broad scale conservation questions about genetic diversity and population differentiation. As Hawaiian monk seal population numbers continue to decline, outstanding fine-scale genetic questions require enhanced genotyping capacity of a rich archive of specimens. Here we integrate 24 novel polymorphic microsatellite markers into three multiplex polymerase chain reactions and provide summary statistics. The mean number of alleles was 2.625; mean expected and observed heterozygosities were 0.3586 and 0.3489, respectively; and mean polymorphic information content was 0.027. This multiplex assay contributes additional analytical power to further investigate genetic questions related to population recovery of an iconic endangered species.

Keywords

Endangered species Hawaiian monk seals Marine mammals Microsatellite multiplex PCR Genetic diversity 

Supplementary material

12686_2016_517_MOESM1_ESM.pdf (76 kb)
Supplementary material 1 (PDF 76 kb)

References

  1. Aldridge B, Bowen L, Smith B et al (2006) Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population. Immunogenetics 58:203–215. doi:10.1007/s00251-005-0069-y CrossRefPubMedGoogle Scholar
  2. Gemmell NJ, Goodman SJ, Allen PJ, Reed JZ (1997) Interspecific microsatellite markers for the study of pinniped populations. Mol Ecol 6:661CrossRefPubMedGoogle Scholar
  3. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  4. IUCN (2015) The IUCN red list of threatened species. Version 2015-3. http://www.iucnredlist.org/details/13654/0
  5. Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995. doi:10.1007/s10592-006-9134-9 CrossRefGoogle Scholar
  6. Kretzmann MB, Gilmartin WG, Meyer A et al (1997) Low genetic variability in the Hawaiian monk seal. Conserv Biol 11:482–490. doi:10.1046/j.1523-1739.1997.96031.x CrossRefGoogle Scholar
  7. Kretzmann MB, Gemmell NJ, Meyer A (2001) Microsatellite analysis of population structure in the endangered Hawaiian monk seal. Conserv Biol 15:457–466. doi:10.1046/j.1523-1739.2001.015002457.x CrossRefGoogle Scholar
  8. Littnan C, Harting A, Baker J (2015) Neomonachus schauinslandi: the IUCN red list of threatened species 2015: e.T13654A45227978. doi:10.2305/IUCN.UK.2015-2.RLTS.T13654A45227978.en
  9. Park S (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Dissertation, University of DublinGoogle Scholar
  10. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  11. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708 CrossRefPubMedGoogle Scholar
  13. Schultz JK, Baker JD, Toonen RJ, Bowen BW (2009) Extremely low genetic diversity in the endangered Hawaiian monk seal (Monachus schauinslandi). J Hered 100:25–33. doi:10.1093/jhered/esn077 CrossRefPubMedGoogle Scholar
  14. Schultz JK, Marshall AJ, Pfunder M (2010) Genome-wide loss of diversity in the critically endangered Hawaiian monk seal. Diversity 2:863–880. doi:10.3390/d2060863 CrossRefGoogle Scholar
  15. United States Code (1976) Endangered Species Act of 1973. 16 U.S.C. 1531 et seq Google Scholar
  16. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. doi:10.1046/j.1471-8286.2002.00228.x-i2 CrossRefGoogle Scholar
  17. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  18. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Ecology, Evolution, and Environmental BiologyColumbia UniversityNew YorkUSA
  2. 2.Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkUSA
  3. 3.Endangered Species DivisionNOAA FisheriesSilver SpringUSA
  4. 4.Hawaiian Monk Seal Research ProgramNOAA FisheriesHonoluluUSA

Personalised recommendations