Conservation Genetics Resources

, Volume 8, Issue 1, pp 13–16 | Cite as

Development of SNP markers for population structure and phylogeography characterization in little owl (Athene noctua) using a genotyping- by-sequencing approach

  • I. PellegrinoEmail author
  • L. Boatti
  • M. Cucco
  • F. Mignone
  • T. N. Kristensen
  • N. Mucci
  • E. Randi
  • A. Ruiz-Gonzalez
  • C. Pertoldi
Technical Note


Single nucleotide polymorphisms (SNPs) are becoming the most utilized markers in population genetics studies. Reduced representation genome techniques, as genotyping-by-sequencing (GBS), allow identifying great numbers of polymorphisms that are useful to analyze genetic diversity in non-model organisms. In this investigation, we implemented a GBS protocol and different bioinformatics tools to identify a novel SNP panel and investigate the genetic structure and variability in populations of little owl (Athene noctua) sampled from seven geographical regions in Europe (Balkans, north-west Europe, north, central and south Italy, Spain and Portugal). We obtained a total of 22,185 putative SNPs and 1306 indels. After the filtering procedure, 7175 SNP loci and 53 individuals met the stringent quality control measures. Neutrality test identified 281 candidate loci under positive selection, which were used for population genetic analyses. The selected SNP panel allowed an accurate description of the genetic structure of the little owl.


Athene noctua SNP Genotyping-by-sequencing Population genetics 



We thank all the museum curators, wildlife recovery centers and colleagues who provided us with material for this study. This study has been partly supported by the Danish Natural Science Research Council for financial support to CP (Grant Number: #11-103926, #09-065999 and 95095995), the Carlsberg Foundation (Grant Number 2011-01-0059), the Aalborg Zoo Conservation Foundation (AZCF) and the Aage Jensens Foundation.


  1. Antao T, Lopes A, Lopes RJ et al (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323CrossRefGoogle Scholar
  2. Beaumont M, Nichols R (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond. Ser B- Biol Sci 263:1619–1626CrossRefGoogle Scholar
  3. Brehm CL (1855) Der vollständige Vogelfang. WeimarGoogle Scholar
  4. Brehm CL (1857) Die Naturgeschichte und Zucht der Tauben. WeimarGoogle Scholar
  5. Cramp S (1985) Handbook of the birds of Europe, the middle east and North Africa, Vol. IV terns to woodpeckers. Oxford University Press, OxfordGoogle Scholar
  6. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Publ Gr 12:499–510Google Scholar
  7. Ekblom R, Galindo J (2010) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  8. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:1–10CrossRefGoogle Scholar
  9. Garrick RC, Bonatelli IAS, Hyseni C et al (2015) The evolution of phylogeographic data sets. Mol Ecol 24:1164–1171CrossRefPubMedGoogle Scholar
  10. Groenen M, Megens H-J, Zare Y et al (2011) The development and characterization of a 60K SNP chip for chicken. BMC Genomics 12:274CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  12. Joost S, Bonin A, Bruford MW et al (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969CrossRefPubMedGoogle Scholar
  13. Kleinschmidt O (1907) Zum geographischen Variieren von Strix Athene. Falco 3:63–67Google Scholar
  14. Pellegrino I, Negri A, Cucco M et al (2014) Phylogeography and Pleistocene refugia of the Little Owl Athene noctua inferred from mtDNA sequence data. Ibis 156:639–657CrossRefGoogle Scholar
  15. Pellegrino I, Negri A, Boano G et al (2015) Evidence for strong genetic structure in European populations of the little owl Athene noctua. J Avian Biol 46:462–475CrossRefGoogle Scholar
  16. Pertoldi C, Pellegrino I, Cucco M et al (2012) Genetic consequences of population decline in the Danish population of the little owl (Athene noctua). Evol Ecol Res 14:921–932Google Scholar
  17. Purcell S, Neale B, Todd-Brown K, Al E (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am Soc Hum Genet 81:559–575CrossRefGoogle Scholar
  18. Šálek M, Schröpfer L (2008) Population decline of the little owl (Athene noctua Scop.) in the Czech Republic. Pol J Ecol 56:527–534Google Scholar
  19. Scopoli GA (1769) Anni Historico-Naturales. Leipzig, GermanyGoogle Scholar
  20. Spinks PQ, Thomson RC, Shaffer HB (2014) The advantages of going large: genome-wide SNPs clarify the complex population history and systematics of the threatened western pond turtle. Mol Ecol 23:2228–2241CrossRefPubMedGoogle Scholar
  21. Trucchi E, Gratton P, Whittington JD et al (2014) King penguin demography since the last glaciation inferred from genome-wide data. Proc R Soc B 81:20140528CrossRefGoogle Scholar
  22. Van Den Brink NW, Groen NM, De Jonge J, Bosveld ATC (2003) Ecotoxicological suitability of floodplain habitats in The Netherlands for the little owl (Athene noctua vidalii). Environ Pollut 122:127–134CrossRefGoogle Scholar
  23. Willing E, Dreyer C, Van Oosterhout C (2012) Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One 7:e42649CrossRefPubMedPubMedCentralGoogle Scholar
  24. Żmihorski M, Romanowski J, Osojca G (2009) Habitat preferences of a declining population of the little owl, Athene noctua in Central Poland. Folia Zool 58:207–215Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Science and Technological InnovationUniversity of Piemonte OrientaleAlessandriaItaly
  2. 2.Department of BioscienceAarhus UniversityAarhus CDenmark
  3. 3.Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca AmbientaleOzzano dell’EmiliaBolognaItaly
  4. 4.Department of Zoology and Animal Cell BiologyUniversity of the Basque CountryVitoria-GasteizSpain
  5. 5.Systematics, Biogeography and Population Dynamics Research Group, Lascaray Research CenterUniversity of the Basque CountryVitoria-GasteizSpain
  6. 6.Aalborg ZooAalborgDenmark

Personalised recommendations