Conservation Genetics Resources

, Volume 7, Issue 4, pp 859–870 | Cite as

Characterization of MHC class II genes in the critically endangered European eel (Anguilla anguilla)

  • Seraina Emilia Bracamonte
  • Miguel Baltazar-Soares
  • Christophe Eizaguirre
Methods and Resources Article

Abstract

Many exploited fish species are threatened with collapse and the European eel is no exception. Its abundance has declined dramatically and various reasons account for this, among them the introduction of the invasive swim bladder nematode Anguillicola crassus. For developing an adequate immune response against this parasite, variation at the genes of the major histocompatibility complex (MHC), a key component of the adaptive immune system, might be essential and assessing their diversity might provide critical information for improving conservation strategies. Here, we characterized the MHC class II of the European eel. We provide evidence for relatively high diversity at both MHC IIA and MHC IIB, which contrasts with findings for other endangered species. Furthermore, both genes show signs of site-specific positive selection. The absence of overall positive selection at MHC IIB might, however, suggests that demographic shifts have negatively impacted that gene, thereby possibly reducing the adaptive potential of the European eel.

Keywords

Major histocompatibility complex European eel Positive selection Demography 

Supplementary material

12686_2015_501_MOESM1_ESM.pdf (344 kb)
Supplementary material 1 (PDF 343 kb)
12686_2015_501_MOESM2_ESM.pdf (354 kb)
Supplementary material 2 (PDF 353 kb)

References

  1. Aguilar A, Garza JC (2007) Patterns of historical balancing selection on the salmonid major histocompatibility complex class II beta gene. J Mol Evol 65:34–43CrossRefPubMedGoogle Scholar
  2. Alcaide M (2010) On the relative roles of selection and genetic drift in shaping MHC variation. Mol Ecol 19:3842–3844CrossRefPubMedGoogle Scholar
  3. Bahr A, Wilson AB (2012) The evolution of MHC diversity: evidence of intralocus gene conversion and recombination in a single-locus system. Gene 497:52–57CrossRefPubMedGoogle Scholar
  4. Baltazar-Soares M, Biastoch A, Harrod C, Hanel R, Marohn L, Prigge E, Evans D, Bodles K, Behrens E, Boning CW, Eizaguirre C (2014) Recruitment collapse and population structure of the European eel shaped by local ocean current dynamics. Curr Biol 24:104–108CrossRefPubMedGoogle Scholar
  5. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: What have we learned about natural selection in 15 years? J Evol Biol 16:363–377CrossRefPubMedGoogle Scholar
  6. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) 3-dimensional structure of the human class-II histocompatibility antigen HLA-DR1. Nature 364:33–39CrossRefPubMedGoogle Scholar
  7. Castro-Prieto A, Wachter B, Sommer S (2011) Cheetah paradigm revisited: MHC diversity in the world’s largest free-ranging population. Mol Biol Evol 28:1455–1468CrossRefPubMedGoogle Scholar
  8. Coppe A, Pujolar JM, Maes GE, Larsen PF, Hansen MM, Bernatchez L, Zane L, Bortoluzzi S (2010) Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered European eel. BMC Genomomics 11:635Google Scholar
  9. Eizaguirre C, Lenz TL, Sommerfeld RD, Harrod C, Kalbe M, Milinski M (2011) Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging three-spined stickleback ecotypes. Evol Ecol 25:605–622CrossRefGoogle Scholar
  10. Eizaguirre C, Lenz TL, Kalbe M, Milinski M (2012) Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nature Commun 3:621Google Scholar
  11. Ejsmond MJ, Radwan J (2011) MHC diversity in bottlenecked populations: a simulation model. Conserv Genet 12:129–137CrossRefGoogle Scholar
  12. Friedland KD, Miller MJ, Knights B (2007) Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES J Mar Sci 64:519–530CrossRefGoogle Scholar
  13. Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722CrossRefPubMedGoogle Scholar
  14. Gomez D, Conejeros P, Marshall SH, Consuegra S (2010) MHC evolution in three salmonid species: a comparison between class II alpha and beta genes. Immunogenetics 62:531–542CrossRefPubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  17. ICES (2014) Report of the joint EIFAAC/ICES/GFCM working group on eel. ICES CM 2014/ACOM:18, Rome, ItalyGoogle Scholar
  18. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Mol Phylogenet Evol 26:110–120CrossRefPubMedGoogle Scholar
  19. IUCN Red List. http://www.iucnredlist.org/. Accessed 8 June 2015
  20. Janeway CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Publishing, New YorkGoogle Scholar
  21. Kiemnec-Tyburczy KM, Richmond JQ, Savage AE, Zamudio KR (2010) Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class II beta alleles of New World ranid frogs. Immunogenetics 62:741–751CrossRefPubMedGoogle Scholar
  22. Kikkawa EF, Tsuda TT, Sumiyama D, Naruse TK, Fukuda M, Kurita M, Wilson RP, LeMaho Y, Miller GD, Tsuda M, Murata K, Kulski JK, Inoko H (2009) Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus). Immunogenetics 61:341–352CrossRefPubMedGoogle Scholar
  23. Kirk RS (2003) The impact of Anguillicola crassus on European eels. Fish Manage Ecol 10:385–394CrossRefGoogle Scholar
  24. Klein J (1987) Origin of major histocompatibility complex polymorphism—the transspecies hypothesis. Hum Immunol 19:155–162CrossRefPubMedGoogle Scholar
  25. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species—a proposal. Immunogenetics 31:217–219PubMedGoogle Scholar
  26. Klein J, Sato A, O’HUigin C (1998) Evolution by gene duplication in the major histocompatibility complex. Cytogenet Cell Genet 80:123–127CrossRefPubMedGoogle Scholar
  27. Knopf K, Mahnke M (2004) Differences in susceptibility of the European eel (Anguilla anguilla) and the Japanese eel (Anguilla japonica) to the swim-bladder nematode Anguillicola crassus. Parasitology 129:491–496CrossRefPubMedGoogle Scholar
  28. Kruiswijk CP, Hermsen T, Fujiki K, Dixon B, Savelkoul HFJ, Stet RJM (2004) Analysis of genomic and expressed major histocompatibility class Ia and class II genes in a hexaploid Lake Tana African ‘large’ barb individual (Barbus intermedius). Immunogenetics 55:770–781CrossRefPubMedGoogle Scholar
  29. Landry C, Bernatchez L (2001) Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol Ecol 10:2525–2539CrossRefPubMedGoogle Scholar
  30. Lefebvre FS, Crivelli AJ (2004) Anguillicolosis: dynamics of the infection over two decades. Dis Aquat Organ 62:227–232CrossRefPubMedGoogle Scholar
  31. Lenz TL (2011) Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution 65:2380–2390CrossRefPubMedGoogle Scholar
  32. Lenz TL, Becker S (2008) Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci—implications for evolutionary analysis. Gene 427:117–123CrossRefPubMedGoogle Scholar
  33. Lenz TL, Wells K, Pfeiffer M, Sommer S (2009) Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the long-tailed giant rat (Leopoldamys sabanus). BMC Evol Biol 9:269Google Scholar
  34. Liu Z, Hu DD, Shao SJ, Huang JQ, Wang JF, Yang J (2013) Polymorphisms in major histocompatibility complex class II alpha genes are associated with resistance to infectious hematopoietic necrosis in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). J Appl Ichthyol 29:1234–1240CrossRefGoogle Scholar
  35. Moutou KA, Mamuris Z, Firme T, Kontou M, Sarafidou T, Stoumboudi MT (2011) Patterns of variability at the major histocompatibility class I and class II loci in populations of the endangered cyprinid Ladigesocypris ghigii. Conserv Genet 12:1159–1171CrossRefGoogle Scholar
  36. Near TJ, Eytan RI, Dornburg A, Kuhn KL, Moore JA, Davis MP, Wainwright PC, Friedman M, Smith WL (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proc Natl Acad Sci USA 109:13698–13703PubMedCentralCrossRefPubMedGoogle Scholar
  37. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806PubMedCentralCrossRefPubMedGoogle Scholar
  38. Newbold LR, Hockley FA, Williams CF, Cable J, Reading AJ, Auchterlonie N, Kemp PS (2015) Relationship between European eel Anguilla anguilla infection with non-native parasites and swimming behaviour on encountering accelerating flow. J Fish Biol 86:1519–1533CrossRefPubMedGoogle Scholar
  39. Osborne MJ, Turner TF (2011) Isolation and characterization of major histocompatibility class II beta genes in an endangered North American cyprinid fish, the Rio Grande silvery minnow (Hybognathus amarus). Fish Shellfish Immunol 30:1275–1282CrossRefPubMedGoogle Scholar
  40. Ottova E, Simkova A, Martin JF, de Bellocq JG, Gelnar M, Allienne JF, Morand S (2005) Evolution and trans-species polymorphism of MHC class II beta genes in cyprinid fish. Fish Shellfish Immunol 18:199–222CrossRefPubMedGoogle Scholar
  41. Palstra AP, Heppener DFM, van Ginneken VJT, Szekely C, van den Thillart G (2007) Swimming performance of silver eels is severely impaired by the swim-bladder parasite Anguillicola crassus. J Exp Mar Biol Ecol 352:244–256CrossRefGoogle Scholar
  42. Pelster B (2015) Swimbladder function and the spawning migration of the European eel Anguilla anguilla. Front Physiol 5:10CrossRefGoogle Scholar
  43. Peters MB, Turner TF (2008) Genetic variation of the major histocompatibility complex (MHC class II beta gene) in the threatened Gila trout, Oncorhynchus gilae gilae. Conserv Genet 9:257–270CrossRefGoogle Scholar
  44. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  45. Pinsky ML, Jensen OP, Ricard D, Palumbi SR (2011) Unexpected patterns of fisheries collapse in the world’s oceans. Proc Natl Acad Sci USA 108:8317–8322PubMedCentralCrossRefPubMedGoogle Scholar
  46. Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641CrossRefPubMedGoogle Scholar
  47. Reusch TBH, Schaschl H, Wegner KM (2004) Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics 56:427–437CrossRefPubMedGoogle Scholar
  48. Schmidt J (1923) The breeding places of the eel. Philos Trans R Soc Lond Ser B Contain Pap Biol Char 211:179–208CrossRefGoogle Scholar
  49. Shen T, Xu SX, Yang M, Pang SY, Yang G (2011) Molecular cloning, expression pattern, and 3D structural analysis of the MHC class IIB gene in the Chinese longsnout catfish (Leiocassis longirostris). Vet Immunol Immunopathol 141:33–45CrossRefPubMedGoogle Scholar
  50. Siddle HV, Kreiss A, Eldridge MDB, Noonan E, Clarke CJ, Pyecroft S, Woods GM, Belov K (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci USA 104:16221–16226PubMedCentralCrossRefPubMedGoogle Scholar
  51. Silva DSP, Reis MIR, Nascimento DS, do Vale A, Pereira PJB, dos Santos NMS (2007) Sea bass (Dicentrarchus labrax) invariant chain and class II major histocompatibility complex: sequencing and structural analysis using 3D homology modelling. Mol Immunol 44:3758–3776CrossRefPubMedGoogle Scholar
  52. Sin YW, Dugdale HL, Newman C, Macdonald DW, Burke T (2012) MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis. Immunogenetics 64:313-327Google Scholar
  53. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16PubMedCentralCrossRefPubMedGoogle Scholar
  54. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B Biol Sci 277:979–988CrossRefGoogle Scholar
  55. Spurgin LG, van Oosterhout C, Illera JC, Bridgett S, Gharbi K, Emerson BC, Richardson DS (2011) Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 20:5213–5225CrossRefPubMedGoogle Scholar
  56. Stiebens VA, Merino SE, Chain FJJ, Eizaguirre C (2013) Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing. BMC Evol Biol 13:95Google Scholar
  57. Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 20:4408–4420CrossRefPubMedGoogle Scholar
  58. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  59. Teng HY, Lin YS, Tzeng CS (2009) A new Anguilla species and a reanalysis of the phylogeny of freshwater eels. Zool Stud 48:808–822Google Scholar
  60. Tesch F-W (2003) The eel, 3rd edn. Blackwell Science Ltd, OxfordCrossRefGoogle Scholar
  61. Trowsdale J (1993) Genomic structure and function in the MHC. Trends Genet 9:117–122CrossRefPubMedGoogle Scholar
  62. Wakeland EK, Boehme S, She JX, Lu CC, McIndoe RA, Cheng I, Ye Y, Potts WK (1990) Ancestral polymorphisms of MHC class-II genes—divergent allele advantage. Immunol Res 9:115–122CrossRefPubMedGoogle Scholar
  63. Wegner KM (2008) Historical and contemporary selection of teleost MHC genes: Did we leave the past behind? J Fish Biol 73:2110–2132CrossRefGoogle Scholar
  64. Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232CrossRefPubMedGoogle Scholar
  65. Würtz J, Taraschewski H (2000) Histopathological changes in the swimbladder wall of the European eel Anguilla anguilla due to infections with Anguillicola crassus. Dis Aquat Organ 39:121–134CrossRefPubMedGoogle Scholar
  66. Würtz J, Taraschewski H, Pelster B (1996) Changes in gas composition in the swimbladder of the European eel (Anguilla anguilla) infected with Anguillicola crassus (Nematoda). Parasitology 112:233–238CrossRefPubMedGoogle Scholar
  67. Xu TJ, Chen SL, Ji XS, Sha ZX (2009) Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA and IIB genes of half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol 27:192–201CrossRefPubMedGoogle Scholar
  68. Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar
  69. Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  3. 3.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations