Advertisement

Conservation Genetics Resources

, Volume 7, Issue 2, pp 505–507 | Cite as

Isolation and characterisation of 16 microsatellite loci from a widespread tropical hydrozoan, Lytocarpia brevirostris (Busk, 1852)

  • Bautisse Postaire
  • D. Aurelle
  • C. A. F. Bourmaud
  • J. H. Bruggemann
  • H. Magalon
Microsatellite Letters

Abstract

We isolated and characterized 16 polymorphic microsatellite loci for Lytocarpia brevirostris (Aglaopheniidae), a hydrozoan common in the tropical Indo-Pacific region. Four to 34 alleles per locus were detected at the Indo-Pacific scale. At the population level, observed (H o ) and expected (H e ) heterozygosities ranged across 0.100–0.625 and 0.097–0.597, respectively. Three markers showed significant deviation from Hardy–Weinberg equilibrium, all of them presenting null alleles. Linkage disequilibrium was detected in three pairs of loci among 120. These primers provide powerful tools for studying population genetic diversity and the implication of life cycle strategies on population differentiation in tropical hydrozoans. This will be valuable for the conservation of coral reefs biodiversity and the design of marine protected areas.

Keywords

Hydrozoa Aglaopheniidae Microsatellite Lytocarpia brevirostris 

Notes

Acknowledgments

We gratefully acknowledge the Plateforme Gentyane of the Institut National de la Recherche Agronomique (INRA, Clermont-Ferrand, France) for guidance and technical support. The first author was financially supported by a PhD contract from the Doctoral School of the University of Reunion Island.

Supplementary material

12686_2014_407_MOESM1_ESM.pdf (62 kb)
Supplementary material 1 (PDF 62 kb)

References

  1. Bouillon J, Gravili C, Pagès F, Boero F (2006) An introduction to Hydrozoa. Mémoires du Muséum national d'Histoire naturelle (1936), vol 194. Muséum national d'Histoire naturelle, Paris, p 591Google Scholar
  2. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedCentralGoogle Scholar
  3. Malausa T, Gilles A, Meglecz E, Blanquart H, Duthoy S, Costedoat C, Dubut V, Pech N, Castagnone-Sereno P, Delye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Male PJG, Ferreira S, Martin JF (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Res 11:638–644CrossRefGoogle Scholar
  4. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin JF (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404CrossRefPubMedGoogle Scholar
  5. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Bautisse Postaire
    • 1
    • 2
  • D. Aurelle
    • 3
  • C. A. F. Bourmaud
    • 1
    • 2
  • J. H. Bruggemann
    • 1
    • 2
  • H. Magalon
    • 1
    • 2
  1. 1.Université de La Réunion, Laboratoire ECOMAR-FRE3560 INEE-CNRS97744 St Denis Cedex 09La Réunion, France
  2. 2.
  3. 3.Aix Marseille Université, CNRS, IRD, Avignon Université, IMBE UMR 7263MarseilleFrance

Personalised recommendations