Conservation Genetics Resources

, Volume 6, Issue 4, pp 803–806 | Cite as

Validation of microsatellite multiplexes for parentage analysis in a coral reef fish (Lutjanus carponotatus, Lutjanidae)

  • Hugo B. HarrisonEmail author
  • Kevin A. Feldheim
  • Geoffrey P. Jones
  • Hicham Mansour
  • Sadhasivam Perumal
  • David H. Williamson
  • Michael L. Berumen
Technical Note


Parentage analysis is an important tool for identifying connectivity patterns in coral reef fishes, but often requires numerous highly polymorphic markers. We isolated 21 polymorphic microsatellite markers from the stripey snapper, Lutjanus carponotatus and describe their integration into three multiplex PCRs. All markers were highly polymorphic with a mean of 24.9 ± 1.8 SE alleles per locus and an average observed heterozygosity of 0.797 ± 0.038 SE across 285 genotyped individuals. Using a simulated dataset, we conclude that the complete marker set provides sufficient resolution to resolve parent–offspring relationships in natural populations with 99.6 ± 0.1 % accuracy in parentage assignments. This multiplex assay provides an effective means of investigating larval dispersal and population connectivity in this fishery-targeted coral reef fish species and informing the design of marine protected area networks for biodiversity conservation and fisheries management.


Microsatellite multiplex Parentage analysis Dispersal Coral reef fish Lutjanus carponotatus 



We are grateful to volunteers who assisted with sample collections. This project was supported by KAUST awards CRG-1-2012-BER-002 and OCRF-SPCF-2011-BER-001, as well as the Australian government’s National Environmental Research Program (NERP), Tropical Ecosystem’s Hub. It formed part of Project 8.3: The significance of no-take marine protected areas to regional recruitment and population persistence on the GBR. Additional support was provided by the ARC Centre of Excellence for Coral Reef Studies and the KAUST Red Sea Research Center.


  1. Alberto F (2009) MsatAllele_1.0: an R package to visualize the binning of microsatellite alleles. J Hered 100:394–397PubMedCrossRefGoogle Scholar
  2. Berumen ML, Almany GR, Planes S, Jones GP, Saenz-Agudelo P, Thorrold SR (2012) Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network. Ecol Evol 2:444–452PubMedCentralPubMedCrossRefGoogle Scholar
  3. Christie MR, Tissot BN, Albins MA, Beets JP, Jia Y, Ortiz DM, Thompson SE, Hixon MA (2010) Larval connectivity in an effective network of marine protected areas. PLoS ONE 5:e15715PubMedCentralPubMedCrossRefGoogle Scholar
  4. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  5. Guo Y, Wang Z, Liu L, Liu Y (2007) Isolation and characterization of microsatellite DNA loci from Russell’s snapper (Lutjanus russellii). Mol Ecol Notes 7:1219–1221CrossRefGoogle Scholar
  6. Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22:1023–1028PubMedCrossRefGoogle Scholar
  7. Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013) Relative accuracy of three common methods of parentage analysis in natural populations. Mol Ecol 22:1158–1170PubMedCrossRefGoogle Scholar
  8. Harrison HB, Feldheim KA, Jones GP, Ma K, Mansour H, Perumal S, Williamson DH and Berumen ML (2014) Assessing the accuracy of microsatellite datasets for parentage analysis and species discrimination in two hybridising species of coral reef fish (Plectropomus spp., Serranidae). Ecol Evol. doi: 10.1002/ece3.1002
  9. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106:5693–5697PubMedCentralPubMedCrossRefGoogle Scholar
  10. Rice WR (1989) Analyzing tables of statistical tests. Evol 43:223–225Google Scholar
  11. Sale P, Cowen R, Danilowicz B et al (2005) Critical science gaps impede use of no-take fishery reserves. Trends Ecol Evol 20:74–80Google Scholar
  12. Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S (2011) Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc R Soc B Biol Sci 278:2954–2961CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hugo B. Harrison
    • 1
    Email author
  • Kevin A. Feldheim
    • 2
  • Geoffrey P. Jones
    • 1
    • 3
  • Hicham Mansour
    • 4
  • Sadhasivam Perumal
    • 4
  • David H. Williamson
    • 1
  • Michael L. Berumen
    • 5
  1. 1.Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.Pritzker Laboratory for Molecular Systematics and EvolutionThe Field MuseumChicagoUSA
  3. 3.School of Marine and Tropical BiologyJames Cook UniversityTownsvilleAustralia
  4. 4.Functional Genomics Group, Biosciences Core LaboratoryKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia
  5. 5.Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations