Advertisement

Conservation Genetics Resources

, Volume 5, Issue 3, pp 749–753 | Cite as

Characterization of thirty two microsatellite loci for three Atlanto-Mediterranean echinoderm species

  • Alex Garcia-Cisneros
  • Claudio Valero-Jiménez
  • Creu Palacín
  • Rocío Pérez-PortelaEmail author
Technical Note

Abstract

Thirty two microsatellites were optimized from 454 pyrosequencing libraries for three Atlanto-Mediterranean echinoderms: Coscinasterias tenuispina, Echinaster sepositus and Arbacia lixula. We observed different frequency of microsatellite types (di-, tri-, tetra- and penta-nucleotide) throughout the genome of the species, but no significant differences were observed in allele richness among different microsatellite repeats. No loci showed linkage disequilibrium. Heterozygosity deficit and departure from Hardy–Weinberg equilibrium were observed for some loci, in two species, probably due to high levels of inbreeding. Heterozygosity excess observed in C. tenuispina could be explained by selection against homozygotes and/or outcrossing.

Keywords

Pyrosequencing Inbreeding Clonality Conservation Starfish Sea urchin 

Notes

Acknowledgments

This research was supported by a predoctoral FPI-MICINN fellowship to A.G.C (BES-2011-044154), the Spanish Government project CTM2010-22218-C02-02 and the European project 287844-COCONET (FP7/2007–2013).

Supplementary material

12686_2013_9897_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 45 kb)

References

  1. Blanquer A, Uriz MJ (2010) Population genetics at three spatial scales of a rare sponge living in fragmented habitats. BMC Evol Biol 10:13PubMedCrossRefGoogle Scholar
  2. Bonaviri C, Vega Fernández T, Fanelli G, Badalamenti F, Gianguzza P (2011) Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Mar Biol 158:2505–2513CrossRefGoogle Scholar
  3. Calderón I, Turon X, Pascual M (2009) Isolation of nine nuclear microsatellites in the common Mediterranean sea urchin, Paracentrotus lividus (Lamarck). Mol Ecol Resour 4:1145–1147CrossRefGoogle Scholar
  4. Coll M, Piroddi C, Steenbeek J, Kaschner K, Lasram FBR, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T, Danovaro R, Estrada M, Froglia C, Galil BS, Gasol JM, Gertwagen R, Gil J, Guilhaumon F, Kesner-Reyes K, Kitsos M-S, Koukouras A, Lampadariou N, Laxamana E, López-Fé de la Cuadra CM, Lotze HK, Martin D, Mouillot D, Oro D, Raicevich S, Rius-Barile J, Saiz-Salinas JI, San Vicente C, Somot S, Templado J, Turon X, Vafidis D, Villanueva R, Voultsiadou E (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5:e11842PubMedCrossRefGoogle Scholar
  5. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4, Available from http://www.geneious.com
  6. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  7. Guidetti P, Fraschetti S, Terlizzi A, Boero F (2003) Distribution patterns of sea urchins and barrens in shallow Mediterranean rocky reefs impacted by the illegal fishery of the rock-boring mollusc Lithophaga lithophaga. Mar Biol 143:1135–1142CrossRefGoogle Scholar
  8. Jones PG, Srinivasan M, Almany RG (2007) Population connectivity and conservation of marine biodiversity. Oceanography 20:100–111CrossRefGoogle Scholar
  9. Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260PubMedCrossRefGoogle Scholar
  10. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin J-F (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. J Bioinf 26:403–414CrossRefGoogle Scholar
  11. Pérez-Portela R, Turon X (2008) Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zoology 111:163–178PubMedCrossRefGoogle Scholar
  12. Petit RJ, El Mousadik A, Ponst O (1998) Identifying basis of populations markers for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  13. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  14. Thibaut T, Pinedo S, Torras X, Ballesteros E (2005) Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albères coast (France, North-western Mediterranean). Mar Pollut Bull 50:1472–1489PubMedCrossRefGoogle Scholar
  15. Valero-Jiménez C, Pérez-Portela R, López-Legentil S (2012) Characterization of novel microsatellite markers from the worldwide invasive ascidian Styela plicata. Conserv Genet Resour 4:559–561CrossRefGoogle Scholar
  16. Villamor A, Becerro MA (2010) Matching spatial distributions of the sea star Echinaster sepositus and crustose coralline algae in shallow rocky Mediterranean communities. Mar Biol 157:2241–2251CrossRefGoogle Scholar
  17. Wangensteen OS, Turon X, Pérez-Portela R, Palacín C (2012) Natural or naturalized? Phylogeography suggests that the abundant sea urchin Arbacia lixula is a recent colonizer of the Mediterranean. PLoS ONE 7:e45067PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alex Garcia-Cisneros
    • 1
  • Claudio Valero-Jiménez
    • 1
    • 2
  • Creu Palacín
    • 1
    • 3
  • Rocío Pérez-Portela
    • 4
    Email author
  1. 1.Department of Animal Biology (Invertebrates)University of BarcelonaBarcelonaSpain
  2. 2.Wageningen UniversityWageningenThe Netherlands
  3. 3.Biodiversity Research Institute (IRBIO)BarcelonaSpain
  4. 4.Center for Advanced studies of Blanes (CEAB-CSIC)GironaSpain

Personalised recommendations