Conservation Genetics Resources

, Volume 5, Issue 3, pp 863–866 | Cite as

A highly informative microsatellite panel for individual identification and sex determination of jungle cats (Felis chaus)

  • Sandeep Sharma
  • Trishna Dutta
  • Jesús E. Maldonado
  • Thomas C. Wood
  • Hemendra Singh Panwar
  • John Seidensticker
Application Essays

Abstract

The jungle cat (Felis chaus), a small-sized felid, is distributed across Southeast and South Asia to Egypt in Africa. In India, it is one of the most common small cat species but no reliable methods are available to monitor its population status. We describe a non-invasive genetic monitoring technique using fecal samples for individual identification and sex determination of jungle cats. We evaluated 21 feline microsatellites and optimized a panel of 11 highly polymorphic microsatellite loci that yield a cumulative Probability of Identity between siblings value of 5.51×10−6. We used this panel to identify 110 individuals from 118 jungle cat scats collected from tiger reserves in Central India. We identified 22 males and 35 females by amplifying a fragment of the Amelogenin protein gene. This panel will be helpful to study genetic structure, gene flow, relatedness, sex ratio, and population estimation in jungle cats.

Keywords

Noninvasive DNA sampling Felis chaus Individual identification Microsatellite Sex assignment 

References

  1. Bhagavatula J, Singh L (2006) Genotyping faecal samples of Bengal tiger Panthera tigris tigris for population estimation: a pilot study. BMC Genet 7:48PubMedCrossRefGoogle Scholar
  2. Dutta T, Sharma S, Maldonado JE, Wood TC, Seidensticker J (2012a) A reliable method for individual identification and gender determination of wild leopards (Panthera pardus fusca) using non-invasive samples. Conserv Genet Resour 3:665–667CrossRefGoogle Scholar
  3. Dutta T, Sharma S, Maldonado JE, Wood TC, Panwar HS, Seidensticker J (2012b) Fine-scale population genetic structure in a wide-ranging carnivore, the leopard (Panthera pardus fusca) in central India. Divers Distrib 1–12. doi:10.1111/ddi.12024
  4. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106PubMedCrossRefGoogle Scholar
  5. Menotti-Raymond M, David VA, Lyons LA et al (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23PubMedCrossRefGoogle Scholar
  6. Mukherjee S, Ashalakshmi CN, Home C, Ramakrishnan U (2010) An evaluation of the PCR-RFLP technique to aid molecular-based monitoring of felids and canids in India. BMC Res Notes 3:159PubMedCrossRefGoogle Scholar
  7. Pilgrim KL, Mckelvey KS, Riddle aE, Schwartz MK (2005) Felid sex identification based on noninvasive genetic samples. Mol Ecol Notes 5:60–61CrossRefGoogle Scholar
  8. Raymond M, Rousset F (1995) Genepop (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  9. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  10. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  11. Sharma S, Dutta T, Maldonado JE, Wood TC, Panwar HS, Seidensticker J (2013) Spatial genetic analysis reveals high connectivity of tiger (Panthera tigris) populations in the Satpura-Maikal landscape of Central India. Ecol Evol 3(1):48–60. doi:10.1002/ece3.432 CrossRefGoogle Scholar
  12. Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acid Res 24:3189–3194PubMedCrossRefGoogle Scholar
  13. Valière N (2002) GIMLET: a computer program for analyzing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  14. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  15. Vanak AT, Mukherjee S (2008) Identification of scat of Indian fox, jungle cat and golden jackal based on morphometrics. J Bombay Nat Hist Soc 105:212Google Scholar
  16. Waits L (2004) Using noninvasive genetic sampling to detect and estimate abundance of rare wildlife species. In: Thompson WL (ed) Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters, 1st edn. Island Press, Washington, pp 211–228Google Scholar
  17. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sandeep Sharma
    • 1
    • 2
  • Trishna Dutta
    • 1
    • 2
  • Jesús E. Maldonado
    • 1
    • 2
  • Thomas C. Wood
    • 2
  • Hemendra Singh Panwar
    • 3
  • John Seidensticker
    • 1
  1. 1.Smithsonian Conservation Biology InstituteNational Zoological ParkWashingtonUSA
  2. 2.Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxUSA
  3. 3.GurgaonIndia

Personalised recommendations