Conservation Genetics Resources

, Volume 5, Issue 2, pp 405–407 | Cite as

Development of tetranucleotide microsatellite markers in Pinus kesiya Royle ex Gordon

  • D. V. Thao
  • M. Yamashita
  • A. WatanabeEmail author
  • S. Shiraishi
Technical Note


Pinus kesiya Royle ex Gordon (P. kesiya) is one of the economically and ecologically important pine species in South-East Asian. 12 polymorphic tetranucleotide microsatellite markers were isolated from this species using a dual-suppression polymerase chain reaction (PCR) technique and these markers were characterized in 24 individuals collected from a natural population in the Southern Vietnam. The number of alleles per locus ranged from 2 to 28, and expected heterozygosities of the 12 loci ranged from 0.198 to 0.954, with an average of 0.685. These polymorphic markers will serve as useful tools for studies of conservation genetics in P. kesiya and probably in its closely related species.


Pinus kesiya Tetranucleotide microsatellite marker Dual-suppression PCR 


  1. Boyle TJB, Liengsiri C, Piewluang C (1990) Genetic studies in a tropical pine—Pinus kesiya II. Genetic variation among four populations in Northern Thailand. J Trop For Sci 3(4):308–317Google Scholar
  2. Costa e Silva J (2007) Evaluation of an international series of Pinus kesiya provenance trials for adaptive, growth and wood quality traits. Forest & Landscape Working Papers no. 22–2007. Forest & Landscape DenmarkGoogle Scholar
  3. Eckert KA, Mowery A, Hile SE (2002) Misalignment-mediated DNA polymerase beta mutations: comparison of microsatellite and frame-shift error rates using a forward mutation essay. Bio-chemistry 41(33):10490–10498. doi: 10.1021/Bi025918c Google Scholar
  4. Guan L, Shiraishi S (2011) Tetranucleotide microsatellite markers in Cryptomeria japonica D. Don. Conserv Genet Res 3:283–285. doi: 10.1007/s12686-010-9342-y CrossRefGoogle Scholar
  5. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1166. doi: 10.1111/j.1365-294X.2007.03089.x PubMedCrossRefGoogle Scholar
  6. Lian C, Hogetsu T (2002) Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-suppression PCR technique. Mol Ecol Notes 2(3):211–213. doi: 10.1046/j.1471-8278.2002.00213.x Google Scholar
  7. Munyard KA, Ledger JM, Lee CY, Babra C, Groth DM (2009) Characterization and multiplex genotyping of alpaca tetranucleotide microsatellite markers. Small Rumin Res 85(2–3):153–156. doi: 10.1016/j.smallrumres.2009.07.012 CrossRefGoogle Scholar
  8. Myburg H, Harris SA (1997) Genetic variation across the natural distribution of the south East Asian pine Pinus kesiya ROYLE ex GORDON (Pinaceae). Silvae Genetica 46(5):295–301Google Scholar
  9. Nguyen B et al (2008) The Nature and people. In: Pham ST et al (eds) Da Lat Monography. Ho Chi Minh Publishing House, Ho Chi Minh, pp 61–130 (Dia chi Da Lat in Vietnamese) Accessed 15/08/2012
  10. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  11. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • D. V. Thao
    • 1
  • M. Yamashita
    • 1
  • A. Watanabe
    • 2
    Email author
  • S. Shiraishi
    • 2
  1. 1.Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
  2. 2.Laboratory of Silviculture, Faculty of AgricultureKyushu UniversityFukuokaJapan

Personalised recommendations