Advertisement

Conservation Genetics Resources

, Volume 5, Issue 1, pp 81–84 | Cite as

Development of 15 nuclear microsatellite markers in the genus Dyckia (Pitcairnioideae; Bromeliaceae) using 454 pyrosequencing

  • Tina Wöhrmann
  • Diego Sotero de Barros Pinangé
  • Florian Krapp
  • Ana-Maria Benko-Iseppon
  • Bruno Huettel
  • Kurt Weising
Technical Note

Abstract

The genus Dyckia (Bromeliaceae) comprises 147 species that are distributed in Brazil and adjacent countries. Many species are rare and narrow endemics. We used 454 pyrosequencing to isolate 1,587 microsatellite loci in Dyckia marnier-lapostollei. Of 50 loci that were selected for primer design, 15 markers proved to be polymorphic in five populations from three heterologous species, Dyckia dissitiflora, Dyckia pernambucana and Dyckia limae. Numbers of alleles per locus varied from 3 to 30, and expected and observed heterozygosities ranged from 0.21 to 0.53 and from 0.16 to 0.44, respectively, in the overall sample. The 15 new microsatellite markers are promising tools for studying population genetics in Dyckia species.

Keywords

Bromeliaceae Cross-species transferability Dyckia Microsatellites 454 Pyrosequencing 

Notes

Acknowledgments

We thank R Louzada, G Cruz and G Wanderley for help in the field work. F Krapp and D Pinangé are supported by PhD fellowship grants of the Otto-Braun-Fonds (Melsungen, Germany) and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (Brazil), respectively. This work was supported by DAAD/CAPES in the frame of a PROBRAL project, and by PNADB/CAPES.

References

  1. Barbará T, Martinelli G, Fay MF, Mayo SJ, Lexer C (2007) Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude “inselbergs”: Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Mol Ecol 16:1981–1992PubMedCrossRefGoogle Scholar
  2. Conceição AA, Pirani JR (2007) Diversidade em quatro áreas de campos rupestres na Chapada Diamantina, Bahia, Brasil: espécies distintas, mas riquezas similares. Rodriguésia 58:193–206Google Scholar
  3. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.11: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. Available from http://cmpg.unibe.ch/software/arlequin3/. Accessed 18 Aug 2011
  4. Hmeljevski KV, Resi A, Montagna T, dos Reis MS (2011) Genetic diversity, genetic drift and mixed mating system in small subpopulations of Dyckia ibiramensis, a rare endemic bromeliad from Southern Brazil. Conserv Genet 12:761–769CrossRefGoogle Scholar
  5. Luther HE (2008) An alphabetical list of bromeliad binomials, 11th edn. Marie Selby Botanical Gardens, SarasotaGoogle Scholar
  6. Palma-Silva C, Wendt T, Pinheiro F, Barbará F, Day MF, Cozzolino S, Lexer C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in neotropical inselbergs. Mol Ecol 20:3185–3201PubMedCrossRefGoogle Scholar
  7. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249. Available from http://genepop.curtin.edu.au/. Accessed 18 Aug 2011
  8. Siqueira-Filho JA, Santos AMM, Leme MC, Cabral JS (2006) Atlantic forest fragments and bromeliads in Pernambuco and Alagoas: distribution, composition, richness and conservation. In: Siqueira-Filho JA, Leme EM (eds) Fragmentos de Mata Atlântica do Nordeste, Biodiversidade, Conservação e suas Bromélias. Andrea Jakobsson Estúdio, Rio de JaneiroGoogle Scholar
  9. Smith LB (1934) Geographical evidence on the lines of evolution in the Bromeliaceae. Bot Jahrb Syst 66:446–468Google Scholar
  10. Smith LB, Downs RJ (1974) Pitcairnioideae (Bromeliaceae). Flora Neotropica Monographs 14 (part 1):1–662Google Scholar
  11. Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Report 17:249–254CrossRefGoogle Scholar
  12. Versieux LM, Wendt T (2007) Bromeliaceae diversity and conservation in Minas Gerais state, Brazil. Biodivers Conserv 16:2989–3009CrossRefGoogle Scholar
  13. Versieux LM, Barbará T, Wanderley MGL, Calvente A, Fay MF, Lexer C (2012) Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): implications for morphological evolution and biogeography. Mol Phylogenet Evol 64:177–189PubMedCrossRefGoogle Scholar
  14. Wöhrmann T, Wagner N, Krapp F, Huettel B, Weising K (2012) Development of microsatellite markers in Fosterella rusbyi (Bromeliaceae) using 454 pyrosequencing. Amer J Bot [published online]:e160–e163Google Scholar
  15. You FM, Huo N, Gu YQ, Luo M-C, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinform 9:253. Available from http://probes.pw.usda.gov/batchprimer3/index.html. Accessed 11 June 2011

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tina Wöhrmann
    • 1
  • Diego Sotero de Barros Pinangé
    • 2
  • Florian Krapp
    • 1
  • Ana-Maria Benko-Iseppon
    • 2
  • Bruno Huettel
    • 3
  • Kurt Weising
    • 1
  1. 1.Department of Sciences, Plant Molecular SystematicsUniversity of KasselKasselGermany
  2. 2.Genetics Department, CCBUniversidade Federal de Pernambuco (UFPE)RecifeBrazil
  3. 3.Max Planck Institute for Plant Breeding ResearchCologneGermany

Personalised recommendations