Conservation Genetics Resources

, Volume 4, Issue 4, pp 967–969 | Cite as

Anonymous nuclear markers for the African adders (Serpentes: Viperidae: Bitis)

  • Axel Barlow
  • Wendy Grail
  • Mark de Bruyn
  • Wolfgang Wüster
Technical Note


We report five novel anonymous nuclear loci for the African viper genus Bitis, developed from a genomic library of a single individual puff adder (Bitis arietans). All loci amplify consistently and are variable among seven B. arietans sampled from disparate portions of the geographic range. Trials with nine congeneric species showed one locus amplifies across all species tested, three amplify in a subset of species and one only amplifies in B. arietans. Genetic divergences for these loci range from comparable, to more than double that of a commonly used nuclear protein-coding marker in Bitis. These loci will provide a valuable resource for future investigations of these snakes.


Anonymous nuclear loci Phylogenetics Phylogeography Africa Bitis 



This work was funded by a Natural Environment Research Council Studentship to AB. For samples we thank Tomas Mazuch, Tony Phelps, Andre Coetzer, Kate Jackson, the Smithsonian USNM, Al Coritz, Johannes Els, Bryan Maritz and Craig Van Rensburg.


  1. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693PubMedCrossRefGoogle Scholar
  2. Ashton KG, de Queiroz A (2001) Molecular systematics of the western rattlesnake, Crotalus viridis (Viperidae), with comments on the utility of the D-loop in phylogenetic studies of snakes. Mol Phylogenet Evol 21:176–189PubMedCrossRefGoogle Scholar
  3. Branch B (1998) Field guide to snakes and other reptiles of Southern Africa, 3rd edn. Struik, Cape TownGoogle Scholar
  4. Branch WR (1999) Dwarf adders of the Bitis cornuta-inornata complex (Serpentes: Viperidae) in southern Africa. Kaupia 8:39–63Google Scholar
  5. Brito PH, Edwards SV (2009) Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135:439–455PubMedCrossRefGoogle Scholar
  6. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580PubMedCrossRefGoogle Scholar
  7. IUCN (2011) IUCN red list of threatened species, version 2011.2. Accessed 31 March 2012
  8. Kumazawa Y, Ota H, Nishida M, Ozawa T (1996) Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol 13:1242–1254PubMedCrossRefGoogle Scholar
  9. Lenk P, Herrmann H-W, Joger U, Wink M (1999) Phylogeny and taxonomic subdivision of Bitis (Reptilia: Viperidae) based on molecular evidence. Kaupia 8:31–38Google Scholar
  10. Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users and biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics, methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  11. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Gen 76:449–462CrossRefGoogle Scholar
  12. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Gen 68:978–989CrossRefGoogle Scholar
  13. Townsend TM, Alegre RE, Kelley ST, Wiens JJ, Reeder TW (2008) Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. Mol Phylogenet Evol 47:129–142PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Axel Barlow
    • 1
  • Wendy Grail
    • 1
  • Mark de Bruyn
    • 1
  • Wolfgang Wüster
    • 1
  1. 1.School of Biological Sciences, Environment Centre WalesBangor UniversityBangorUK

Personalised recommendations