Conservation Genetics Resources

, Volume 4, Issue 2, pp 339–341 | Cite as

Development of 18 microsatellite markers for the southern purple-spotted gudgeon (Mogurnda adspersa) from the lower Murray-Darling Basin through 454 pyrosequencing

  • Daniel C. Carvalho
  • Minami Sasaki
  • Michael P. Hammer
  • Luciano B. Beheregaray
Technical Note

Abstract

A new set of 18 microsatellite loci was developed for the threatened Australian freshwater fish southern purple-spotted gudgeon Mogurnda adspersa (Eleotridae) using a next generation sequencing approach. A total of 84 fish from two populations (including one rescued into captivity) were successfully genotyped at all markers using a multiplex approach. As expected for threatened species, we observed relatively low genetic variation across most loci (average allelic diversity = 5.4; average heterozygosity = 0.380). No evidence for linkage disequilibrium was detected and all loci were in Hardy–Weinberg equilibrium. This new set of microsatellite markers will benefit substantially the ongoing conservation program of a critically endangered population of M. adspersa that involves captive breeding, relatedness and paternity analyses, reintroduction, and landscape genetics.

Keywords

Critically endangered population Relatedness Captive breeding Reintroduction Conservation program Evolutionary significant units 

Notes

Acknowledgments

Funding for this study was provided by the Australian Research Council (LP100200409 to Beheregaray, Harris & Adams). Additional support was received by DENR, SA Museum, SA Murray Darling NRMB, PIRSA Fisheries and Native Fish Australia (SA). We thank Mark Adams for providing tissue samples and Mike Gardner for assistance with data analysis. DC is grateful to CAPES/REUNI (Brazilian Ministry of Education) for his postdoctoral fellowship.

References

  1. Beheregaray LB, Sunnucks P (2000) Microsatellite loci isolated from Odontesthes argentinensis and the O. perugiae species group and their use in other south American silverside fish. Mol Ecol 9(5):629–631. doi:10.1046/j.1365-294x.2000.00882.x PubMedCrossRefGoogle Scholar
  2. Carvalho D, Beheregaray L (2010) Rapid development of microsatellites for the endangered neotropical catfish Conorhynchus conirostris using a modest amount of 454 shot-gun pyrosequencing. Conserv Genet Resour 1–3. doi:10.1007/s12686-010-9365-4
  3. Faircloth BC (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8(1):92–94PubMedCrossRefGoogle Scholar
  4. Faulks LK, Gilligan DM, Beheregaray LB (2008) Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in Eastern Australia: conservation implications. Mar Freshw Res 59(1):89–96. doi:10.1071/Mf07167 CrossRefGoogle Scholar
  5. Hall A, Higham J, Hammer M, Brice C, Zampatti B (2009) Drought action plan for South Australian Murray-Darling Basin threatened freshwater fish populations 2009–2010; rescue to recovery. South Australia Department of Heritage, AdelaideGoogle Scholar
  6. Hammer M, Wedderburn S, van Weenan J (2009) Action plan for South Australian freshwater fishes. Native Fish Australia (SA) Inc, Adelaide, p 206Google Scholar
  7. Holleley CE, Geerts PG (2009) Multiplex manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46(7):511–517. doi:10.2144/000113156 PubMedCrossRefGoogle Scholar
  8. Lintermans M (2007) Fishes of the Murray-Darling Basin: an introductory guide. Murray-Darling Basin Commission, CanberraGoogle Scholar
  9. Margulies M, Egholm M, Altman WE, Attiya S et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. doi:10.1038/nature03959 PubMedGoogle Scholar
  10. Meglécz E (2007) Microfamily (v.1): a computer program for detecting flanking-region similarities among different microsatellite loci. Mol Ecol Notes 7(1):18–20. doi:10.1111/j.1471-8286.2006.01537.x CrossRefGoogle Scholar
  11. Real K, Schmidt D, Hughes J (2009) Mogurnda adspersa microsatellite markers: multiplexing and multi-tailed primer tagging. Conserv Genet Resour 1(1):411–414. doi:10.1007/s12686-009-9095-7 CrossRefGoogle Scholar
  12. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225CrossRefGoogle Scholar
  13. Rousset F (2008) Genepop ‘ 007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8(1):103–106. doi:10.1111/j.1471-8286.2007.01931.x PubMedCrossRefGoogle Scholar
  14. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386. doi:10.1385/1-59259-192-2:365 PubMedGoogle Scholar
  15. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234. doi:10.1038/72708 PubMedCrossRefGoogle Scholar
  16. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/J.1471-8286.2004.00684.X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Daniel C. Carvalho
    • 1
    • 3
  • Minami Sasaki
    • 1
  • Michael P. Hammer
    • 2
  • Luciano B. Beheregaray
    • 1
  1. 1.Molecular Ecology Laboratory, School of Biological SciencesFlinders UniversityAdelaideAustralia
  2. 2.Evolutionary Biology Unit, South Australian MuseumAdelaideAustralia
  3. 3.Laboratório de Genética Animal, Escola de VeterináriaUniversidade Federal de Minas GeraisMinas GeraisBrazil

Personalised recommendations