Conservation Genetics Resources

, Volume 4, Issue 1, pp 97–99 | Cite as

Development of eight polymorphic microsatellite loci in the cephalopod Octopus pallidus

Technical Note


Three tri- and six tetra-nucleotide microsatellites are reported for the pale octopus (Octopus pallidus), a species with direct larval development from Tasmanian waters. Eight of these loci exhibited polymorphism among 92 individuals, with 2–13 alleles and observed heterozygosities ranging between 0.034 and 0.85. Four loci also amplified successfully in the congener O. maorum (N = 3, collected from two localities).


Octopus pallidus Octopus maorum Microsatellite Pale octopus Maori octopus Fisheries 


  1. Doubleday ZA, Pecl GT, Semmens JM, Danyushevsky L (2008) Stylet elemental signatures indicate population structure in a holobenthic octopus species, Octopus pallidus. Mar Ecol Prog Ser 371:1–10CrossRefGoogle Scholar
  2. Doubleday ZA, Semmens JM, Smolenski AJ, Shaw PW (2009) Microsatellite DNA markers and morphometrics reveal a complex population structure in a merobenthic octopus species (Octopus maorum) in south-east Australia and New Zealand. Mar Biol 156:1183–1192CrossRefGoogle Scholar
  3. Faircloth B (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94PubMedCrossRefGoogle Scholar
  4. Jones K, Levine K, Banks J (2002) Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis). Mol Ecol Notes 2:425–427CrossRefGoogle Scholar
  5. Leporati SC, Pecl GT, Semmens JM (2008) Reproductive status of Octopus pallidus, and its relationship to age and size. Mar Biol 155:375–385CrossRefGoogle Scholar
  6. Leporati SC, Ziegler PE, Semmens JM (2009) Assessing the stock status of holobenthic octopus fisheries: Is catch per unit effort sufficient? ICES J Mar Sci 66:478–487CrossRefGoogle Scholar
  7. Pérez-Losada M, Guerra A, Carvalho GR, Sanjuan A, Shaw PW (2002) Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. Heredity 89:417–424PubMedCrossRefGoogle Scholar
  8. Rice TK, Schork NJ, Rao DC (2008) Methods for handling multiple testing. In: Rao DC, Gu CC (eds) Advances in Genetics, vol 60. Academic Press, pp 293–308Google Scholar
  9. Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  10. Semmens JM, Pecl GT, Gillanders BM, Waluda CM, Shea EK, Jouffre D, Ichii T, Zumholz K, Katugin ON, Leporati SC, Shaw PW (2007) Approaches to resolving cephalopod movement and migration patterns. Rev Fish Biol Fisheries 17:401–423CrossRefGoogle Scholar
  11. Shaw PW, Pierce GJ, Boyle PR (1999) Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol Ecol 8:407–417CrossRefGoogle Scholar
  12. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of ZoologyUniversity of TasmaniaHobartAustralia

Personalised recommendations