Conservation Genetics Resources

, Volume 3, Issue 4, pp 605–607 | Cite as

New microsatellite markers for the assessment of fine-scale dispersal patterns in the endangered montane caddisfly Drusus discolor

  • Jutta Geismar
  • Jan Sauer
  • Peter Haase
  • Carsten Nowak
Technical Note

Abstract

We present a panel of variable microsatellite markers for the montane caddisfly Drusus discolor, a rare species that we use as a model for the assessment of climate change effects on the montane freshwater community. 454 sequencing technology was used in order to generate random sequence data. Of a total of 2,648 microsatellite-carrying fragments identified, 11 variable, reproducible markers were generated and tested on 41 individuals from two populations. Allelic diversity ranged from 3 to 10 alleles and heterozygosity values varied from 0 to 0.89 (H O) and 0.12 to 0.86 (H E). A cross-species test on four caddisfly species showed that a subset of markers amplifies in related taxa.

Keywords

Short tandem repeats Landscape genetics Dispersal Aquatic insects Microsatellite development Montane biodiversity Global climate change 

Notes

Acknowledgments

We thank Steffen U. Pauls (Biodiversity and Climate Research Center) for providing samples for the cross-species test. Funding comes from the Deutsche Forschungsgemeinschaft (HA3431/4-1). Additional funding is provided by the research funding program Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) of Hesse’s Ministry of Higher Education, Research, and the Arts.

References

  1. Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Ann Rev Ecol Syst 32:159–181CrossRefGoogle Scholar
  2. Heino J, Virkkala R, Toivonen H (2009) Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biol Rev 84:39–54PubMedCrossRefGoogle Scholar
  3. Lehrian S, Pauls SU, Haase P (2009) Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolor in the Central European highlands. Freshw Biol 54:283–295CrossRefGoogle Scholar
  4. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol S 37:637–660CrossRefGoogle Scholar
  5. Pauls SU, Lumbsch HT, Haase P (2006) Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival. Mol Ecol 15:2153–2169PubMedCrossRefGoogle Scholar
  6. Pauls SU, Feldheim KA, Haase P (2007) Isolation and characterization of microsatellite markers in the caddisfly Drusus discolor (Trichoptera: Limnephilidae). Mol Ecol Notes 7:150–152CrossRefGoogle Scholar
  7. Rousset F (2008) GENPOP ‘007: a complete re-implementation of the GENEPOP Software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  8. Rozen S, Skaletsky HJ (1998) Primer3. Code available at http://www.genome.wi.mit.edu/genome_software/other/primer3.html
  9. Weir BS (1996) Genetic data analysis II. Sinauer, SunderlandGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jutta Geismar
    • 1
    • 2
  • Jan Sauer
    • 1
  • Peter Haase
    • 1
    • 2
  • Carsten Nowak
    • 1
    • 2
  1. 1.Biodiversity and Climate Research Centre (BiK-F)Frankfurt am MainGermany
  2. 2.Department of Limnology and ConservationSenckenberg Research Institutes and Natural History MuseumsGelnhausenGermany

Personalised recommendations