Advertisement

Conservation Genetics Resources

, Volume 3, Issue 1, pp 127–129 | Cite as

Efficient identification of Microtus cabrerae excrements using noninvasive molecular analysis

  • Samer AlasaadEmail author
  • Antonio Sánchez
  • Juan Alberto Marchal
  • Ana Píriz
  • José A. Garrido-García
  • Francisco Carro
  • Ismael Romero
  • Ramón C. Soriguer
Technical Note

Abstract

Noninvasive sampling is a potentially cost-effective and efficient means of monitoring wild animals that precludes the need for captures and avoids undue disturbance. Nevertheless, it is generally difficult to separate faeces deposited by Microtus cabrerae from that of other sympatric rodents of similar body size on the basis of just morphological features and content. Species identification methods in many noninvasive studies involve mtDNA analysis. Here we report the first use of species-specific primers targeting the SRY gene in a noninvasive molecular identification of Cabrera’s vole. This noninvasive molecular-based technique may thus provide us with a potential tool for further genetic and ecological study of this threatened species of Iberian vole.

Keywords

Microtus cabrerae Species identification Noninvasive samples SRY gene Repetitive DNA Semi-nested PCR Threatened species 

References

  1. Beja-Pereira A, Oliveira R, Alves PC, Schwartz MK, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9:1279–1301CrossRefGoogle Scholar
  2. Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522CrossRefGoogle Scholar
  3. Berry O, Sarre SD (2007) Gel-free species identification using melt-curve analysis. Mol Ecol Notes 7:1–4CrossRefGoogle Scholar
  4. Blanco JC, González JL (1992) V. Fichas descriptivas de ls especies y subespecies amenazadas: Mamiferos. In: Blanco JC, González JL (eds) Libro Rojo de los Vertebrados de España. Instituto para la Conservación de la Naturaleza, Madrid, pp 714Google Scholar
  5. Cabral MJ (coord) Almeida J, Almeida PR, Dellinger T, Ferrand de Almeida N, Oliveira ME, Palmeirim JM, Queiroz AI, Rogado L, Santos-Reis M (2005) Livro Vermelho dos Vertebrados de Portugal. Lisboa, Instituto de Conservação da NaturezaGoogle Scholar
  6. Fernández R, Barragán MJ, Bullejos M, Marchal JA, Martínez S, Díaz de la Guardia R, Sánchez A (2002) Mapping the SRY gene in Microtus cabrerae: a vole species with multiple SRY copies in males and females. Genome 45:600–603CrossRefPubMedGoogle Scholar
  7. Gilpen ME, Soulé ME (1986) Minimum viable populations: processes of species extinction. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 19–34Google Scholar
  8. Handt O, Höss M, Krings M, Pääbo S (1994) Ancient DNA-methodological challenges. Experientia 50:524–529CrossRefPubMedGoogle Scholar
  9. Kohn MH, Wayne RK (1997) Facts from feces revisited. Trends Ecol Evol 12:223–227CrossRefGoogle Scholar
  10. Lau LT, Fung YW, Wong FP, Lin SS, Wang CR, Li HL, Dillon N, Collins RA, Tam JS, Chan PK, Wang CG, Yu AC (2003) A real-time PCR for SARS-coronavirus incorporating target gene pre-amplification. Biochem Biophys Res Commun 312:1290–1296CrossRefPubMedGoogle Scholar
  11. Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK (2008) Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biol Lett 4:228–231CrossRefPubMedGoogle Scholar
  12. Marchal JA, Acosta MJ, Nietzel H, Sperling K, Bullejos M, Díaz de la Guardia R, Sánchez A (2004) Xchromosome painting in Microtus: origin and evolution of the giant sex chromosomes. Chromosome Res 12: 767–776CrossRefGoogle Scholar
  13. Marchal JA, Acosta MJ, Bullejos M, Díaz de la Guardia R, Sánchez A (2008) Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: role of L1 elements. Genomics 91:142–151CrossRefPubMedGoogle Scholar
  14. Maudet C, Luikart G, Dubray D, Von Hardenberg A, Taberlet P (2004) Low genotyping error rates in ungulate feces sampled in winter. Mol Ecol Notes 4:772–775CrossRefGoogle Scholar
  15. O’Reilly C, Statham M, Mullins J, Turner PD, O’Mahony D (2008) Efficient species identification of pine marten (Martes martes) and red fox (Vulpes vulpes) scats using a 5′ nuclease real-time PCR assay. Conserv Genet 9:735–738CrossRefGoogle Scholar
  16. Primack RB (1993) Essentials of conservation biology. Sinauer Associates, SunderlandGoogle Scholar
  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  18. Schwartz MK, Monfort SL (2008) Genetic and endocrine tools for carnivore surveys. In: Long RA, MacKay P, Ray JC, Zielinski WJ (eds) Noninvasive survey methods for North American carnivores. Island Press, Washington, DC, pp 228–250Google Scholar
  19. Taberlet P, Luikart G (1999) Noninvasive genetic sampling and individual identification. Biol J Linn Soc SU, pp 41–55Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Samer Alasaad
    • 1
    • 2
    Email author
  • Antonio Sánchez
    • 2
  • Juan Alberto Marchal
    • 2
  • Ana Píriz
    • 1
  • José A. Garrido-García
    • 1
  • Francisco Carro
    • 1
  • Ismael Romero
    • 2
  • Ramón C. Soriguer
    • 1
  1. 1.Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC)SevillaSpain
  2. 2.Departamento de Biología ExperimentalUniversidad de JaénJaénSpain

Personalised recommendations