Conservation Genetics Resources

, Volume 2, Issue 1, pp 205–209 | Cite as

New 24 polymorphic DNA microsatellite loci for the major malaria vector Anopheles darlingi and transpecies amplification with another anophelines

  • G. N. Lima
  • J. S. Batista
  • K. M. Formiga
  • F. W. Cidade
  • M. S. Rafael
  • W. P. Tadei
  • J. M. M. Santos
Technical Note

Abstract

Anopheles darlingi is a major human malaria vector in the Neotropics. Twenty-four polymorphic microsatellite loci were isolated and characterized in 21–32 individuals collected in Coari (Amazonas, Brazil). The number of alleles per locus ranged from 4 to 11 (average of 7.667). The observed heterozygosity (HO) varied between 0.037 and 0.833 (average of 0.500), while the expected heterozygosity (HE) ranged from 0.177 to 0.871 (average of 0.723). Thirteen loci showed a significant deviation from HWE. No linkage disequilibrium was found between the loci.

Keywords

Anopheles darlingi Microsatellites Malaria vector Amazon Basin 

References

  1. Billotte N, Lagoda P, Risterucci A, Baurens F (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  2. Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  3. Conn JE, Bollback JP, Onyabe DY, Robinson TN, Wilkerson RC, Póvoa MM (2001) Isolation of polymorphic microsatellite markers from the malaria vector Anopheles darlingi. Mol Ecol Notes 1:223–225CrossRefGoogle Scholar
  4. Freitas-Sibajev M, Conn J, Mitchell S, Cockburn A, Seawright J, Momen H (1995) Mitochondrial DNA and morphological analyses of Anopheles darlingi populations from Brazil. Mosq Syst 27:78–99Google Scholar
  5. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)
  6. Jones DA (1972) Blood samples: probability of discrimination. J Forensic Sci Soc 12:355–359CrossRefPubMedGoogle Scholar
  7. Manguin S, Wilkerson R, Conn J, Rubio-Palis Y, Danoff-Burg J, Roberts D (1999) Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60:364–376PubMedGoogle Scholar
  8. Martins WS, Lucas DCS, KFdS Neves, Bertioli DJ (2009) WebSat – A web software for microsatellite marker development. Bioinformation 3:282–283PubMedGoogle Scholar
  9. Mirabello L, Conn JE (2006) Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Nature Publishing, Basingstoke, ROYAUME-UNIGoogle Scholar
  10. Mirabello L, Vineis J, Yanoviak S, Scarpassa V, Povoa M, Padilla N, Achee N, Conn J (2008) Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America. BMC Ecol 8:3CrossRefPubMedGoogle Scholar
  11. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. University of Dublin, DublinGoogle Scholar
  12. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  13. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Springs Harbor Laboratory Press, Cold Springs Harbor, NYGoogle Scholar
  15. Scarpassa VM, Conn JE (2007) Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. Mem Inst Oswaldo Cruz 102:319–328CrossRefPubMedGoogle Scholar
  16. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  17. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241CrossRefPubMedGoogle Scholar
  18. Tadei W, Thatcher B, Santos J, Scarpassa V, Rodrigues I, Rafael M (1998) Ecologic observations on anopheline vectors of malaria in the Brazilian Amazon. Am J Trop Med Hyg 59:325–335PubMedGoogle Scholar
  19. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  20. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, Pinedo-Cancino V, Patz JA (2006) The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the peruvian amazon. Am J Trop Med Hyg 74:3–11PubMedGoogle Scholar
  21. Wilkerson R, Parson T, Klein T, Gaffgan T, Bergo E, Consolim J (1995) Diagnosis by random amplified polymorphic DNA polymerase chain reaction of four cryptic species related to Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) from Paraguay, Argentina and Brazil. J Med Entomol 32:697–704PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • G. N. Lima
    • 1
  • J. S. Batista
    • 2
    • 3
  • K. M. Formiga
    • 2
    • 3
  • F. W. Cidade
    • 4
  • M. S. Rafael
    • 1
  • W. P. Tadei
    • 1
  • J. M. M. Santos
    • 1
  1. 1.Laboratório de Vetores Malária e DengueInstituto Nacional de Pesquisas da Amazônia, Coordenação de Pesquisas em Ciências da Saúde (CPCS)ManausBrazil
  2. 2.Instituto Nacional de Pesquisas da AmazôniaCoordenação de Pesquisas em Biologia Aquática (CPBA)ManausBrazil
  3. 3.Laboratório Temático de Biologia Molecular (LTBM)Instituto Nacional de Pesquisas da Amazônia, Coordenação de Pesquisas (COPE)ManausBrazil
  4. 4.Departamento de Genética e EvoluçãoCentro de Biologia Molecular e Engenharia Genética, Universidade Estadual de CampinasCampinasBrazil

Personalised recommendations