Development and characterization of microsatellite markers in Astronotus crassipinis (Heckel, 1840)

  • C. F. S. Sousa
  • C. H. A. Santos
  • A. C. B. Sousa
  • M. N. Paula-Silva
  • A. P. Souza
  • I. P. Farias
  • M. S. Ferreira-Nozawa
  • V. M. F. Almeida-Val
Technical Note

Abstract

Astronotus crassipinis is an important freshwater fish in the Amazon basin. Little is known about their population structure and genetic diversity. They live in Amazon varzea lakes and are territorial fish practicing mouth brood. Studies involving populations of A. crassipinis are of great importance for the conservation and management of this species. Therefore, thirteen microsatellite markers were developed for this species and characterized in 30 accessions from lakes Preto and Ananá in Solimões river and lake Piranha, located in the system Negro–Solimões. The observed and expected heterozygosities ranged from 0.00 to 0.72 and 0.25 to 0.58, respectively. Alleles per locus varied from two to six, with an average of three. Three loci departed significantly from Hardy–Weinberg Equilibrium (P < 0.05) after Bonferroni correction. The value of Fis (f) ranged from −0.666 to 0.909 (average on −0.133). This new set of microsatellites will contribute towards studies of genetic diversity and conservation of A. crassipinis.

Keywords

Molecular markers Single sequence repeat (SSR) Genetic diversity Conservation Astronotus crassipinis 

References

  1. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Oxford 641Google Scholar
  2. Billotte N, Lagoda PJR, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  3. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457CrossRefPubMedGoogle Scholar
  4. Creste S, Tulmann Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  5. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008CrossRefPubMedGoogle Scholar
  6. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  7. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simples sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167PubMedGoogle Scholar
  8. Kullander SO (2003) Family Cichlidae (Cichlids). In: Reis RE, Kullander SO, Ferraris CJ (eds) Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto AlegreGoogle Scholar
  9. Miller MP (1997) Tools for population genetic analysis (TFPGA) 1.3. A windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by author. Available at http://herb.bio.nau.edul~miller/tfpga.htm
  10. Porto JIR, Gomes JAA, Farias IP, Feldberg E (2001) Using molecular biology techniques to characterize the diversity of Amazonian ornamental fishes. In: Chao NL, Petri P, Prang G, Soneschien L, Tlusty M (eds) Conservation and management of ornamental fish resources of the Rio Negro Basin, Amazonia, Brazil (Project Piaba). Universidade do Amazonas Press, ManausGoogle Scholar
  11. Queller DC, Strassmann JE, Hughes CR (1993) Microsatellites and kinship. Trends Ecol Evol 8:285–288CrossRefGoogle Scholar
  12. Reis RE, Kullander SO, Ferraris CJ (2003) Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto Alegre, BrazilGoogle Scholar
  13. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  14. Tautz D (1989) Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res 17:6463–6471CrossRefPubMedGoogle Scholar
  15. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analyses. Genome Res 10:967–981CrossRefPubMedGoogle Scholar
  16. Weber JL, May PE (1989) Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  17. Zhu Y, Queller DC, Strassamann JE (2000) A phylogenetic perspective on sequence evolution in microsatellite loci. J Mol Evol 50:324–338PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • C. F. S. Sousa
    • 1
    • 2
  • C. H. A. Santos
    • 1
  • A. C. B. Sousa
    • 3
  • M. N. Paula-Silva
    • 1
  • A. P. Souza
    • 3
  • I. P. Farias
    • 4
  • M. S. Ferreira-Nozawa
    • 2
  • V. M. F. Almeida-Val
    • 1
    • 2
  1. 1.Laboratório de Ecofisiologia e Evolução Molecular (LEEM)Instituto Nacional de Pesquisas da Amazônia (INPA)Aleixo, ManausBrazil
  2. 2.Laboratório de Expressão GênicaCentro Universitário Nilton Lins (CUNL)ManausBrazil
  3. 3.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasBarão Geraldo, CampinasBrazil
  4. 4.Laboratório de Evolução e Genética Animal (LEGAL)Universidade Federal do Amazonas (UFAM)ManausBrazil

Personalised recommendations