Advertisement

Microsatellites from rubber tree (Hevea brasiliensis) for genetic diversity analysis and cross-amplification in six Hevea wild species

  • L. M. Souza
  • C. C. Mantello
  • M. O. Santos
  • P. de Souza Gonçalves
  • Anete Pereira SouzaEmail author
Technical Note

Abstract

Hevea brasiliensis is native to the Amazonian rain forest and an important source of natural rubber. Twenty seven polymorphic microsatellite loci were isolated and characterized from a GA–CA enriched genomic library of H. brasiliensis. The number of alleles ranged from 2 to 20. The observed and expected heterozygosity ranged from 0.13 to 0.88 and from 0.00 to 0.89, respectively. Cross-species amplification of the markers developed for H. brasiliensis was successful in the wild Hevea species H. guianensis, H. rigidifolia, H. nitida, H. pauciflora, H. benthamiana and H. camargoana. The data indicated a high degree of sequence homology in the microsatellite flanking regions of these species. The developed SSR loci are a potential powerful tool for studies of population genetics, genetic diversity and gene flow among Hevea species.

Keywords

Hevea spp. Hevea brasiliensis Microsatellite Genetic diversity Transferability Cross-species amplification 

Notes

Acknowledgments

The authors thank the Brazilian Agricultural Research Corporation (EMBRAPA - Amazônia Ocidental) and the Agronomic Institute of Campinas for donating the analyzed Hevea germoplasm. The present research was financed by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2007/50392-1, 2007/59804-0); L.M.S. and C.M.C. received respectively a undergraduate and graduate scholarship from FAPESP. A.P.S. and P.S.G. received a research fellowship grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

  1. Billotte N, Lagoda PJR, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  2. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827CrossRefGoogle Scholar
  3. Cataldo F (2000) Guayule rubber: a new possible world scenario for the production of natural rubber. Prog Rubber Plast Technol 16:31–59Google Scholar
  4. Choumane W, Winter P, Weigand F, Kahl G (2000) Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (Cicer aerietinum L.) within the genera Cicer. Theor Appl Genet 101:269–278CrossRefGoogle Scholar
  5. Clement-Demange A, Legnate H, Seguin M, Carron MP, Le Guen V, Chapuset T (2000) Rubber tree. In: Charrier A, Jacquot M, Hamon S, Nicolas D et al (eds) Tropical plant breeding. Collection Reperes, CIRAD-ORSTOM, Montpellier, France, pp 455–480Google Scholar
  6. Cornish K (2001) Similarities and differences in rubber biochemistry among plant species. Phytochem 57:1123–1134CrossRefGoogle Scholar
  7. Creste SA et al (2001) Detection of single sequence repeat polymorphism in denaturating polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  8. Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  9. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  10. Lespinasse D et al (2000) Identification of QTLs involved in the resistance to South American Leaf Blight (Microcyclos ulei) in the rubber tree. Theor Appl Genet 100:975–984CrossRefGoogle Scholar
  11. Lorieux M, Ndjiondjop M-N, Ghesquière A (2000) A first interspecific Oryza sativa & Oryza glaberrima microsatellite-based genetic linkage map. Theor Appl Genet 100:593–601Google Scholar
  12. Miller MP (1997) Tools for population genetic analysis (TFPGA) 1.3. A windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by authorGoogle Scholar
  13. Nodari RO, Ducroquet JP, Guerra MP, Meler K (1997) Genetic variability of Feijoa sellowiana germplasm. Acta Hort 452:41–46Google Scholar
  14. Pires JM, Secco RS, Gomes JI (2002) Taxonomia e fitogeografia das seringueiras Hevea spp. Embrapa Amazônia Oriental, Belém, p 103Google Scholar
  15. Seguin M et al (1996) Hevea molecular genetics. Plant Rech Dev 3:77–88Google Scholar
  16. Yeh FC, Rong-Cai Y, Boyle T (1998) POPGENE version 1.31. Edmonton. University of Alberta, Center for InternationalForestry Research, Alberta, CanadaGoogle Scholar
  17. Zucchi MI, Brondani RPV, Pinheiro JB, Chaves LJ, Coelho ASG, Vencovsky R (2003) Genetic structure and gene flow in Eugenia dysenterica DC in the Brazilian Cerrado utilizing SSR markers. Genet Mol Biol 26:449–457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • L. M. Souza
    • 1
  • C. C. Mantello
    • 1
  • M. O. Santos
    • 1
  • P. de Souza Gonçalves
    • 2
    • 3
  • Anete Pereira Souza
    • 1
    • 4
    Email author
  1. 1.Centro de Biologia Molecular e Engenharia GenéticaUniversidade Estadual de Campinas (Unicamp)CampinasBrazil
  2. 2.Instituto Agronômico de Campinas (IAC)CampinasBrazil
  3. 3.Empresa Brasileira de Pesquisa Agropecuária (Embrapa)BrasíliaBrazil
  4. 4.Departamento de Biologia VegetalInstituto de Biologia, UNICAMPCampinasBrazil

Personalised recommendations