Skip to main content

Advertisement

Log in

FeNi3 and Ni-Based Nanoparticles as Electrocatalysts for Magnetically Enhanced Alkaline Water Electrolysis

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 08 February 2021

This article has been updated

Abstract

Today, hydrogen mainly originates from fossil sources (gas, oil, and coal). Room temperature water electrolysis is an interesting alternative for renewable electricity storage, even if it is well-known that high-temperature systems are more efficient. To address this issue, we studied different non-platinum group metal (non-PGM) catalysts for alkaline oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) by recording cyclic voltamperograms with a rotating disk electrode set up. Physicochemical characterizations of Ni-based and FeNi3-based catalysts were performed using transmission electron microscopy, X-ray diffraction (XRD), and inductively coupled plasma mass spectroscopy (ICP-MS). Ni synthesized by the hot injection method is a good catalyst for HER, yet still less active than Pt/C. FeNi3 with and without a Ni surface doping is very good OER catalysts, slightly better than commercial unsupported IrO2. Electrochemical tests under alternating magnetic field (AMF) using these nanoparticles are ongoing, as these materials are compatible with AMF activation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2(21), 7933 (2012). https://doi.org/10.1039/c2ra20839c

    Article  CAS  Google Scholar 

  2. I. Dincer, Environmental and sustainability aspects of hydrogen and fuel cell systems. Int. J. Energy Res. 31(1), 29–55 (2007). https://doi.org/10.1002/er.1226

    Article  CAS  Google Scholar 

  3. S. Ehsan, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ. Rev. 57, 850–866 (2016). https://doi.org/10.1016/j.rser.2015.12.112

    Article  CAS  Google Scholar 

  4. K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36(3), 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002

    Article  CAS  Google Scholar 

  5. U. Bossel, Does a hydrogen economy make sense? IEEE. 94(10), 1826–1837 (2006). https://doi.org/10.1109/JPROC.2006.883715

    Article  CAS  Google Scholar 

  6. J. Chi, H. Yu, Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 39(3), 390–394 (2018). https://doi.org/10.1016/S1872-2067(17)62949-8

    Article  CAS  Google Scholar 

  7. L.F.L. Oliveira, S. Laref, E. Mayousse, A.A. Franco, A multiscale physical model for the transient analysis of PEM water electrolyzer anodes. Phys. Chem. Chem. Phys. 14(29), 10215–10224 (2012). https://doi.org/10.1039/c2cp23300b

    Article  CAS  PubMed  Google Scholar 

  8. S. Cherevko, T. Reier, A.R. Zeradjanin, Z. Pawolek, P. Strasser, K.J.J. Mayrhofer, Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 48, 81–85 (2014). https://doi.org/10.1016/j.elecom.2014.08.027

    Article  CAS  Google Scholar 

  9. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.P. Grote, A. Savan, B.R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K.J.J. Mayrhofer, Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 262, 170–180 (2016). https://doi.org/10.1016/j.cattod.2015.08.014

    Article  CAS  Google Scholar 

  10. S. Geiger, O. Kasian, A.M. Mingers, K.J.J. Mayrhofer, S. Cherevko, Stability limits of tin-based electrocatalyst supports. Sci. Rep. 7(1), 3–9 (2017). https://doi.org/10.1038/s41598-017-04079-9

    Article  CAS  Google Scholar 

  11. O. Kasian, S. Geiger, M. Schalenbach, A.M. Mingers, A. Savan, A. Ludwig, S. Cherevko, K.J.J. Mayrhofer, Using instability of a non-stoichiometric mixed oxide oxygen evolution catalyst as a tool to improve its electrocatalytic performance. Electrocatalysis. 9(2), 139–145 (2018). https://doi.org/10.1007/s12678-017-0394-6

    Article  CAS  Google Scholar 

  12. F. Claudel, Degradation mechanisms of oxygen evolution reaction electrocatalysts: A combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study. ACS Catal. 9(5), 4688–4698 (2019). https://doi.org/10.1021/acscatal.9b00280

    Article  CAS  Google Scholar 

  13. L. Sola-Hernandez, F. Claudel, F. Maillard, C. Beauger, Doped tin oxide aerogels as oxygen evolution reaction catalyst supports. Int. J. Hydrog. Energy 4(45), 24331–24341 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.152

    Article  CAS  Google Scholar 

  14. A. Damien, Hydrogène par électrolyse de l’eau, Tech. l’Ingénieur. (1992)

  15. C. Niether, S. Faure, A. Bordet, J. Deseure, M. Chatenet, J. Carrey, B. Chaudret, A. Rouet, Improved water electrolysis using magnetic heating of FeC–Ni core–shell nanoparticles. Nat. Energy 3(6), 476–483 (2018). https://doi.org/10.1038/s41560-018-0132-1

    Article  CAS  Google Scholar 

  16. A. Bordet, L. Lacroix, P. Fazzini, J. Carrey, K. Soulantica, B. Chaudret, Heterogeneous catalysis hot paper magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power. Communications. 55(51), 1–6 (2016). https://doi.org/10.1002/anie.201609477

    Article  CAS  Google Scholar 

  17. J. Carrey, B. Mehdaoui, M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 109(8), 083921 (2011). https://doi.org/10.1063/1.3551582

    Article  CAS  Google Scholar 

  18. M. Schalenbach, O. Kasian, K.J.J. Mayrhofer, An alkaline water electrolyzer with nickel electrodes enables efficient high current density operation. Int. J. Hydrog. Energy 43(27), 1–7 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.219

    Article  CAS  Google Scholar 

  19. M. Görlin, P. Chernev, J. Ferreira, D. Arau, T. Reier, S. Dresp, B. Paul, R. Kra, H. Dau, P. Strasser, Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni−Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016). https://doi.org/10.1021/jacs.6b00332

    Article  CAS  PubMed  Google Scholar 

  20. M. Görlin, J. Ferreira, D. Arau, H. Schmies, D. Bernsmeier, S. Dresp, M. Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser, Tracking catalyst redox states and reaction dynamics in Ni−Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139(5), 2070–2082 (2017). https://doi.org/10.1021/jacs.6b12250

    Article  CAS  PubMed  Google Scholar 

  21. M. Görlin, P. Chernev, P. Paciok, C.-W. Tai, F.A. de Jorge, T. Reier, M. Heggen, R. Dunin-Borkowski, P. Strasser, H. Dau, Formation of unexpectedly active Ni–Fe oxygen evolution electrocatalysts by physically mixing Ni and Fe oxyhydroxydes. Chem. Commun. 55, 818–821 (2019). https://doi.org/10.1039/c8cc06410e

    Article  CAS  Google Scholar 

  22. F. Moureaux, P. Stevens, G. Toussaint, M. Chatenet, Development of an oxygen-evolution electrode from 316L stainless steel: Application to the oxygen evolution reaction in aqueous lithium e air batteries. J. Power Sources 229, 123–132 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.133

    Article  CAS  Google Scholar 

  23. F. Moureaux, P. Stevens, G. Toussaint, M. Chatenet, Environmental timely-activated 316L stainless steel: A low cost , durable and active electrode for oxygen evolution reaction in concentrated alkaline environments. Appl. Catal. B Environ. 258, 117963 (2019). https://doi.org/10.1016/j.apcatb.2019.117963

    Article  CAS  Google Scholar 

  24. D. De Masi, J.M. Asensio, P. Fazzini, L. Lacroix, B. Chaudret, Engineering iron–nickel nanoparticles for magnetically induced CO2 methanation in continuous flow. Angew. Chem. Int. Ed. 59(15), 1–6 (2020). https://doi.org/10.1002/anie.201913865

    Article  CAS  Google Scholar 

  25. R. Chattot, O. Le Bacq, V. Beermann, S. Kühl, J. Herranz, S. Henning, L. Kühn, T. Asset, L. Guétaz, G. Renou, J. Drnec, P. Bordet, A. Pasturel, A. Eychmüller, T.J. Schmidt, P. Strasser, L. Dubau, F. Maillard, Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 17(9), 827–833 (2018). https://doi.org/10.1038/s41563-018-0133-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. G. Cognard, G. Ozouf, C. Beauger, G. Berthomé, D. Riassetto, L. Dubau, R. Chattot, M. Chatenet, F. Maillard, Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells. Appl. Catal. B Environ. 201, 381–390 (2017). https://doi.org/10.1016/j.apcatb.2016.08.010

    Article  CAS  Google Scholar 

  27. Y. Garsany, J. Ge, J. St-Pierre, R. Rocheleau, K.E. Swider-Lyons, Standardizing thin-film rotating disk electrode measurements of the oxygen reduction activity of Pt/C. ECS Trans. 58(1), 3–14 (2013). https://doi.org/10.1149/05801.0003ecst

    Article  CAS  Google Scholar 

  28. Y. Garsany, J. Ge, J. St-pierre, R. Rocheleau, Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. J. Electrochem. Soc. 161(5), 628–640 (2014). https://doi.org/10.1149/2.036405jes

    Article  CAS  Google Scholar 

  29. Y. Garsany, I.L. Singer, K.E. Swider-lyons, Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. J. Electroanal. Chem. 662(2), 396–406 (2011). https://doi.org/10.1016/j.jelechem.2011.09.016

    Article  CAS  Google Scholar 

  30. B.G. Pollet, J.T.E. Goh, The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim. Acta 128, 292–303 (2014). https://doi.org/10.1016/j.electacta.2013.09.160

    Article  CAS  Google Scholar 

  31. B.G. Pollet, Let’s not ignore the ultrasonic effects on the preparation of fuel cell materials. Electrocatalysis. 5(4), 330–343 (2014). https://doi.org/10.1007/s12678-014-0211-4

    Article  CAS  Google Scholar 

  32. H.A. El-sayed, A. Weiß, L.F. Olbrich, G.P. Putro, H.A. Gasteiger, OER catalyst stability investigation using RDE technique: A stability measure or an artifact ? J. Electrochem. Soc. 166(8), 458–464 (2019). https://doi.org/10.1149/2.0301908jes

    Article  CAS  Google Scholar 

  33. A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, Huge instability of Pt/C catalysts in alkaline medium. ACS Catal. 5(8), 4819–4824 (2015) 1–9

    Article  CAS  Google Scholar 

  34. F. Arteaga-cardona, K. Rojas-rojas, R. Costo, M.A. Mendez-rojas, Improving the magnetic heating by disaggregating nanoparticles. J. Alloys Compd. 663, 636–644 (2016). https://doi.org/10.1016/j.jallcom.2015.10.285

    Article  CAS  Google Scholar 

  35. M. Schalenbach, O. Kasian, M. Ledenecker, F.D. Speck, A.M. Mingers, K.J.J. Mayrhofer, S. Cherevko, The electrochemical dissolution of noble metals in alkaline media. Electrocatalysis. 9(2), 153–161 (2018). https://doi.org/10.1007/s12678-017-0438-y

    Article  CAS  Google Scholar 

  36. E.S. Davydova, S. Mukerjee, D.R. Dekel, Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 8(7), 6665–6690 (2018). https://doi.org/10.1021/acscatal.8b00689

    Article  CAS  Google Scholar 

  37. Y. Qiu, L. Xin, W. Li, Electrocatalytic oxygen evolution over supported small amorphous Ni−Fe nanoparticles in alkaline electrolyte. ACS Pub. 30(26), 7893–7901 (2014). https://doi.org/10.1021/la501246e

    Article  CAS  Google Scholar 

  38. N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts**. Angew. Chem. Int. Ed. 51(50), 12495–12498 (2012). https://doi.org/10.1002/anie.201204842

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The LPCNO authors thank ERC Advanced Grant (MONACAT 2015-694159). The LPCNO is acknowledged for the NP syntheses. Christian Beauger, from the PERSEE group of ARMINES in Sophia Antipolis, is greatly acknowledged for having provided the ATO support used herein.

Funding

This work has been performed in the frame of the Hy-WalHy project, funded by the French National Research Agency (ANR-1-CE05-0017).

Author information

Authors and Affiliations

Authors

Contributions

Vivien Gatard did all the electrochemical tests, the TEM pictures of the Ni-based catalysts with the help of Marian Chatenet, and helped doing ICP-MS measurements with Vincent Martin. Déborah De Masi and Irene Mustieles Marin did the FeNi3 and the FeNi3@Ni syntheses while Pier-Francesco Fazzini characterized them with TEM pictures. Raphaël Chattot designed and performed the Ni-based material syntheses. Juan Manuel Asensio Revert did the FeC@Ni synthesis. Thierry Encinas performed all the XRD measurements. VG, JD, and MC essentially wrote and reviewed the contribution, with the help of Stéphane Faure, Julian Carrey, and Bruno Chaudret.

Corresponding authors

Correspondence to Vivien Gatard or Marian Chatenet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatard, V., De Masi, D., Chattot, R. et al. FeNi3 and Ni-Based Nanoparticles as Electrocatalysts for Magnetically Enhanced Alkaline Water Electrolysis. Electrocatalysis 11, 567–577 (2020). https://doi.org/10.1007/s12678-020-00616-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00616-9

Keywords

Navigation