Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Enhanced Hydrogen Evolution Activity of Ni[MoS2] Hybrids in Alkaline Electrolyte

Abstract

In this paper is presented a simple one-pot synthesis of a composite electrode with a non-noble metal for the catalysis of hydrogen evolution reaction in alkaline media. The Ni[MoS2] composite electrocatalyst has been synthesized by nickel electrodeposition on nickel electrodes with a conventional Ni-Watts plating bath containing MoS2 particles. This method was selected as it allows obtaining a great interaction between the nickel and the MoS2 in order to maximize the synergistic effect between the materials. Thus, electrodes with catalytic activity for hydrogen evolution reaction (HER) six times higher than the recorded from conventional Ni-Watts catalysts, were obtained in a reproducible and scalable way, which is suitable for industrial applications. Structural and spectroscopic characterizations indicate that the presence of MoS2 particles in the nickel matrix modifies the original properties of the metal. Evaluation of the electrodes electroactivity for HER was carried out by potentiodynamic scans, chronoamperometry, and electrochemical impedance spectroscopy in alkaline electrolyte. A Tafel slope of − 0.12 V dec−1 was found, which is consistent with a two-electron transfer process, i.e., the Volmer reaction being the rate-determining step.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    R.D. Cortright, R.R. Davda, J.A. Dumesic, Cheminform. 418, 964 (2002)

  2. 2.

    M.S. Faber, S. Jin, Energy Envir. Sci. 7, 3519 (2014)

  3. 3.

    Y. Xu, C. Zheng, S. Wang, Y. Hou, Electrochim. Acta 174, 653 (2015)

  4. 4.

    J. Benson, M. Li, S. Wang, P. Wang, P. Papakonstantinou, ACS Appl. Mat. & Interf. 7, 2514113 (2015)

  5. 5.

    R. Bose, S.K. Balasingam, S. Shin, Z. Jin, D.H. Kwon, Y. Jun, Y.S. Min, Langmuir 31, 5220 (2015)

  6. 6.

    K.C. Pham, Y.H. Chang, D. Mcphail, C. Mattevi, A.T. Wee, D.H. Chua, ACS Appl. Mat. & Interf. 8, 5961 (2016)

  7. 7.

    J. Kotowicz, L. Bartela, D. Wecel, K. Dubiel, Energy 118, 156 (2017)

  8. 8.

    L. Welder, D. Severin Ryberg, L. Kotzur, T. Grube, M. Robinius, D. Stolten, Energy 158, 1130 (2018)

  9. 9.

    Z. Zhang, W. Li, M.F. Yuen, T.W. Ng, Y. Tang, C.S. Lee, X. Chen, W. Zhang, Nano Energy 18, 196 (2015)

  10. 10.

    D. Celik, M. Yıldız, Int. J. Hydrog Energy 42, 23395 (2017)

  11. 11.

    N. Zhang, W. Ma, T. Wu, H. Wang, D. Han, L. Niu, Electrochim. Acta 180, 155 (2015)

  12. 12.

    S.M. Saba, M. Muller, M. Robinius, D. Stolten, Int. J. Hydrog Energy 43, 1209 (2018)

  13. 13.

    F. Lesure, ACS Appl. Mat. & Interf. 8, 3558 (2015)

  14. 14.

    F. Li, J. Li, X. Lin, X. Li, Y. Fang, L. Jiao, X. An, Y. Fu, J. Jin, R. Li, J. Power Sources 300, 301 (2015)

  15. 15.

    Y. Zhang, L. Zuo, Y. Huang, L. Zhang, F. Lai, W. Fan, T. Liu, ACS Sust. Chem. & Eng. 3, 3140 (2015)

  16. 16.

    X. Dai, K. Du, Z. Li, H. Sun, Y. Yang, X. Zhang, X. Li, H. Wang, Chem. Eng. Sci. 134, 572 (2015)

  17. 17.

    Z. Zheng, N. Li, C.Q. Wang, D.Y. Li, Y. Zhu, G. Wu, Int. J. Hydrog. Energy 37, 13921 (2012)

  18. 18.

    Z. Zheng, N. Li, C.Q. Wang, D.Y. Li, F.Y. Meng, Y. Zhu, Q. Li, G. Wu, J. Power Sources 230, 10 (2013)

  19. 19.

    M.J. Gómez, E.A. Franceschini, G.I. Lacconi, Electrocatal. 9, 459 (2018)

  20. 20.

    E.A. Franceschini, G.I. Lacconi, Electrocatal. 9, 47 (2018)

  21. 21.

    E.A. Franceschini, M.J. Gómez, G.I. Lacconi, J. Energy Chem. 29, 79 (2019)

  22. 22.

    J. Theerthagiri, R.A. Senthil, B. Senthilkumar, A. Reddy Polu, J. Madhavan, M. Ashokkumar, J. Solid State Chem. 252, 43 (2017)

  23. 23.

    Z. He, W. Que, Appl. Mat. Today 3, 23 (2016)

  24. 24.

    B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc. 127, 5308 (2005)

  25. 25.

    T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317, 100 (2007)

  26. 26.

    B.C. Stupp, Thin Solid Films 84, 251 (1981)

  27. 27.

    X. Yin, H. Dong, G. Sun, W. Yang, A.L. Song, Q.H. Du, L. Su, G.J. Shao, Int. J. Hydrog Energy 42, 11262 (2017)

  28. 28.

    D. Escalera-López, Y. Niu, J. Yin, K. Cooke, N.V. Rees, R.E. Palmer, ACS Catalysis 6, 6008 (2016)

  29. 29.

    Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo, X. Qi, H. Zang, D. Yu, C.M. Li, T. Yu, J. Mater. Chem. 22, 8634 (2012)

  30. 30.

    J.D. Roy-Mayhew, G. Boschloo, A. Hagfeldt, I.A. Aksay, ACS Appl. Mater. Interfaces 4, 2794 (2012)

  31. 31.

    J. Tian, Q. Liu, N. Cheng, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53, 9577 (2014)

  32. 32.

    P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53, 12855 (2014)

  33. 33.

    Z. Pu, Q. Liu, P. Jiang, A.M. Asiri, A.Y. Obaid, X. Sun, Chem. Mater. 26, 4326 (2014)

  34. 34.

    J.L. Pinilla, H. Puron, D. Torres, I. Suelves, M. Millan, Carbon 81, 574 (2015)

  35. 35.

    J. Rodríguez-Carvajal, Physica B 192, 55 (1993)

  36. 36.

    R.G. Dickinson, L. Pauling, J. Am. Chem. Soc. 456, 1466 (1923)

  37. 37.

    P. Quaino, F. Juarez, E. Santos, W. Schmickler, Beilstein J. Nanotech. 5, 846 (2014)

  38. 38.

    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillardgeat, Adv. Funct. Mat. 22, 1385 (2012)

  39. 39.

    P.A. Bertrand, Phys. Rev. B 44, 5745 (1991)

  40. 40.

    D.S. Hall, D.J. Lockwood, S. Poirier, C. Bock, B.R. MacDougall, ACS Appl. Mat. Interf. 6, 3141 (2014)

  41. 41.

    B.C. Windom, W.G. Sawyer, D.W. Hahn, Tribology Lett. 42, 301 (2011)

  42. 42.

    E.A. Franceschini, G.I. Lacconi, H.R. Corti, Electrochim. Acta 159, 210 (2015)

  43. 43.

    G. Kreysa, B. Hakansson, P. Ekdunge, Electrochim. Acta 33, 1351 (1988)

  44. 44.

    M.M. Bruno, E.A. Franceschini, G.A. Planes, H.R. Corti, J. Appl. Electrochem. 40, 257 (2010)

  45. 45.

    R.D. Armstrong, M. Henderson, J. Electroanal. Chem. 39, 81 (1972)

  46. 46.

    E.A. Franceschini, G.I. Lacconi, H.R. Corti, J. Energy Chem. 26, 466 (2017)

  47. 47.

    E. Daftsis, N. Pagalos, A. Jannakoudakis, P. Jannakoudakis, E. Theodoridou, R. Rashkov, M. Loukaytsheva, N. Atanassov, J. Electrochem. Soc. 150, C787 (2003)

  48. 48.

    J. Panek, A. Serek, A. Budniok, E. Rowinski, E. Lagiewka, Int. J. Hydrog. Energy 28, 169 (2003)

  49. 49.

    C. Hitz, A. Lasia, J. Electroanal. Chem. 500, 213 (2001)

  50. 50.

    Z. Kerner, J. Pajkossy, Electrochim. Acta 46, 207 (2000)

  51. 51.

    A. Lasia, A. Rami, J. Electroanal. Chem. 294, 123 (1990)

  52. 52.

    A. Lasia, Current Topics in Electrochem. 2, 239 (1993)

  53. 53.

    L. Chen, A. Lasia, J. Electrochem. Soc. 138, 3321 (1991)

Download references

Acknowledgments

The authors thank financial support from National Agency for Scientific and Technological Promotion (PICT 2017-0250), -SECyT-UNC and CONICET (Project PUE-2017). AL thanks for her Scholarships to stimulate scientific vocation granted by CIN and YPF foundation. MJG thanks CONICET for her doctoral fellowship. GIL and EAF are permanent research fellows of CONICET. The authors thank to LAMARX laboratory for its assistance in SEM/EDX measurements, LANN laboratory for its assistance in Raman measurements and to INFIQC for XRD measurements.

Author information

Correspondence to Esteban A. Franceschini or Gabriela I. Lacconi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1674 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loiácono, A., Gómez, M.J., Franceschini, E.A. et al. Enhanced Hydrogen Evolution Activity of Ni[MoS2] Hybrids in Alkaline Electrolyte. Electrocatalysis (2020). https://doi.org/10.1007/s12678-020-00588-w

Download citation

Keywords

  • Molybdenum disulfide
  • Composite
  • Electrochemical impedance spectroscopy
  • Raman spectroscopy
  • Hydrogen electrocatalysts