Advertisement

Pd, PdSn, PdBi, and PdBiSn Nanostructured Thin Films for the Electro-Oxidation of Ethanol in Alkaline Media

  • Nqobile Xaba
  • Remegia M. ModibediEmail author
  • Mkhulu K. Mathe
  • Lindiwe E. Khotseng
Original Research
  • 7 Downloads

Abstract

Pd, PdSn, PdBi and PdBiSn nanostructured thin films were prepared on Au substrate using the electrochemical atomic layer deposition technique. The activity of the nanostructured thin films towards the electro-oxidation of ethanol was tested in alkaline media using electrochemical methods. Scanning electron microscopy results showed that the nanoparticles were evenly distributed on the surface, while the elemental analysis confirmed the presence of all elements on the prepared materials. Cyclic voltammetry studies revealed that the addition of Sn and Bi on Pd improved the activity of Pd and that the ternary nanostructured catalyst was more active towards the oxidation of ethanol than the binary catalysts.

Graphical Abstract

Keywords

Electrodeposition Thin films Electro-oxidation Ethanol 

Notes

Acknowledgements

National Centre for Nano-Structured Materials of the CSIR is acknowledged for the acquisition of SEM/EDS and FIB-SEM images.

Funding Information

This work was funded by the US Air Force Office of Scientific Research (AFOSR) under Dr. Ali Sayir Program grant number FA9550-16-1-0060 and the CSIR-UWC cooperation fund.

References

  1. 1.
    E. Antolini, E. Gonzalez, Alkaline direct alcohol fuel cells. J. Power Sources 195(11), 3431–3450 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Cifrain, K. Kordesch, Handbook of fuel cells, (2003)Google Scholar
  3. 3.
    N. Markovic, H. Gasteiger, P.N. Ross, Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144(5), 1591–1597 (1997)CrossRefGoogle Scholar
  4. 4.
    B. Blizanac, P. Ross, N. Markovic, Oxygen electroreduction on Ag(111): the pH effect. Electrochim. Acta 52(6), 2264–2271 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Kamarudin, S.K. Kamarudin, M. Masdar, W.R.W. Daud, Review: direct ethanol fuel cells. Int. J. Hydrog. Energy 38(22), 9438–9453 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Friedl, U. Stimming, Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim. Acta 101, 41–58 (2013)CrossRefGoogle Scholar
  7. 7.
    B. Braunchweig, D. Hibbitts, M. Neurock, A. Wieckowski, Electrocatalysis: a direct alcohol fuel cell and surface science perspective. Catal. Today 202, 197–209 (2013)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, Q. Chang, H. Chen, M. Shao, Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 29, 198–219 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P.B. Atanassov, Self-supported pdxbi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 136(10), 3937–3945 (2014)PubMedCrossRefGoogle Scholar
  10. 10.
    Q. Yi, H. Chu, Q. Chen, Z. Yang, X. Liu, High performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2C4 alcohols. Electroanalysis 27, 388–397 (2015)CrossRefGoogle Scholar
  11. 11.
    Y.-Y. Feng, Z.-H. Liu, Y. Xu, P. Wang, W.-H. Wang, D.-S. Kong, Highly active PdAu alloy catalysts for ethanol electro-oxidation. J. Power Sources 232, 99–105 (2013)CrossRefGoogle Scholar
  12. 12.
    R.M. Modibedi, E.K. Louw, K.I. Ozoemena, M.K. Mathe, The electrochemical atomic layer deposition of Pt and Pd nanoparticles on Ni foam for the electro-oxidation of alcohols. ECS Trans. 50(21), 9–18 (2013)CrossRefGoogle Scholar
  13. 13.
    R.M. Modibedi, T. Masombuka, M.K. Mathe, Carbon supported Pd–Sn and Pd–Ru–Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrog. Energy 36(8), 4664–4672 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Cai, Y. Huang, Y. Guo, Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium. Electrochim. Acta 99, 22–29 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Dutta, S.S. Mahapatra, J. Datta, High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrog. Energy 36(22), 14898–14906 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Dutta, A. Mondal, P. Broekmann, J. Datta, Optimal level of Au nanoparticles on Pd nanostructures providing remarkable electro-catalysis in direct ethanol fuel cell. J. Power Sources 361, 276–284 (2017)CrossRefGoogle Scholar
  17. 17.
    B.W. Gregory, D.W. Suggs, J.L. Stickney, Conditions for the deposition of CdTe by electrochemical atomic layer epitaxy. J. Electrochem. Soc. 138(5), 1279–1284 (1991)CrossRefGoogle Scholar
  18. 18.
    R. Hoyer, L. Kibler, D. Kolb, The initial stages of palladium deposition onto Pt(1 1 1). Electrochim. Acta 49(1), 63–72 (2003)CrossRefGoogle Scholar
  19. 19.
    L. Kibler, A. El-Aziz, D. Kolb, J. Mol, Electrochemical behaviour of pseudomorphic overlayers: Pd on Au(1 1 1). Catal. A: Chem. 199(1–2), 57–63 (2003)CrossRefGoogle Scholar
  20. 20.
    L. Kibler, M. Kleinert, D. Kolb, Initial stages of Pd deposition on Au(hkl). Surf. Sci. 461(1–3), 155–167 (2000)CrossRefGoogle Scholar
  21. 21.
    J. Tang, M. Petri, L. Kibler, D. Kolb, Pd deposition onto Au(111) electrodes from sulphuric acid solution. Electrochim. Acta 51(1), 125–132 (2005)CrossRefGoogle Scholar
  22. 22.
    A. El-Aziz, L. Kibler, Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111). J. Electroanal. Chem. 534(2), 107–114 (2002)CrossRefGoogle Scholar
  23. 23.
    L. Kibler, M. Kleinert, R. Randler, D. Kolb, Initial stages of Pd deposition on Au(hkl) Part I: Pd on Au(111). Surf. Sci. 443(1–2), 19–30 (1999)CrossRefGoogle Scholar
  24. 24.
    G. Hoogers, Fuel Cell Technology Handbook (CRC press, 2002)Google Scholar
  25. 25.
    M. Carmo, G. Doubek, R.C. Sekol, M. Linardi, A.D. Taylor, Development and electrochemical studies of membrane electrode assemblies for polymer electrolyte alkaline fuel cells using FAA membrane and ionomer. J. Power Sources 230, 169–175 (2013)CrossRefGoogle Scholar
  26. 26.
    T.S. Mkwizu, M.K. Mathe, I. Cukrowski, Electrodeposition of multilayered bimetallic nanoclusters of ruthenium and platinum via surface-limited redox−replacement reactions for electrocatalytic applications. Languir 26(1), 570–580 (2010)CrossRefGoogle Scholar
  27. 27.
    L.B. Sheridan, J. Czerwiniski, N. Jayaraju, D.K. Gebregziabiher, J.L. Stickney, D.B. Robinson, M.P. Soriaga, Electrochemical Atomic layer deposition (E-ALD) of palladium nanofilms by surface limited redox replacement (SLRR), with EDTA complexation. Electrocatalysis 3(2), 96–107 (2012)CrossRefGoogle Scholar
  28. 28.
    L.B. Sheridan, D.K. Gebregziabiher, J.L. Stickney, D.B. Robinson, Formation of palladium nanofilms using electrochemical atomic layer deposition (E-ALD) with chloride complexation. Langmuir 29(5), 1592–1600 (2013)PubMedCrossRefGoogle Scholar
  29. 29.
    J.M. Czerniawski, J.L. Stickney, Electrodeposition of In2Se3 using potential pulse atomic layer deposition. J. Phys. Chem. C 120(29), 16162–16167 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Aldana-Gonzalez, J. Olvera-Garcia, M.M. De Oca, M. Romero-Romo, M. Ramirez-Silva, M. Palomar-Pardave, Electrochemical quantification of the electro-active surface area of Au nanoparticles supported onto an ITO electrode by means of Cu upd. Electrochem. Commun. 56, 70–74 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, L. Wang, A. Pradel, A. Merlen, M. Ribes, M.-C. Record, Underpotential deposition of selenium and antimony on gold. J. Solid State Electrochem. 19(8), 2399–2411 (2015)CrossRefGoogle Scholar
  32. 32.
    R.A. Hameed, Facile preparation of Pd-metal oxide/C electrocatalysts and their application in the electrocatalytic oxidation of ethanol. Appl. Surf. Sci. 411, 91–104 (2017)CrossRefGoogle Scholar
  33. 33.
    B. Pierozynski, T. Mikolajczyk, M. Turemko, On the temperature performance of ethanol oxidation reaction at palladium-activated nickel foam. Electrocatalysis 6(2), 173–178 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.-Y. Feng, Z.-H. Liu, W.-Q. Kong, Q.-Y. Yin, L.-X. Du, Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte. Int. J. Hydrog. Energy 39(6), 2497–2504 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, Q. Yi, Z. Deng, X. Zhou, H. Nie, Excellent electroactivity of ternary Pd–Ag–Sn nanocatalysts for ethanol oxidation. Catal. Lett. 148(4), 1190–1201 (2018)CrossRefGoogle Scholar
  36. 36.
    L. Karuppasamy, S. Anandan, C.-Y. Chen, J.J. Wu, Sonochemical synthesis of PdAg/RGO nanocomposite as an efficient electrocatalyst for both ethanol oxidation and oxygen reduction reaction with high CO tolerance. Electrocatalysis 8(5), 430–441 (2017)CrossRefGoogle Scholar
  37. 37.
    R.M. Modibedi, K.I. Ozoemena, M.K. Mathe, Electrocatalysis, (Springer, 2013), pp. 129–156Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Energy Materials, Energy CentreCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
  2. 2.Department of ChemistryUniversity of Western CapeBellvilleSouth Africa

Personalised recommendations