Advertisement

Kinetics of Toluene Electrohydrogenation on Pt/C Catalyst

  • Yun Bao
  • Teko W. Napporn
  • Kensaku Nagasawa
  • Shigenori MitsushimaEmail author
Original Research
  • 15 Downloads

Abstract

The kinetics of the toluene (TL) electrohydrogenation on a carbon-supported platinum catalyst (Pt/C) have been investigated as a fundamental study of the cathode reaction in an electrolyzer with water decomposition. Since the TL electrohydrogenation on a Pt wire and Pt/C catalyst is a fast kinetic reaction with a low solubility, and slow mass transfer in an aqueous electrolyte, a potential step sequence was employed to determine its kinetic performance. Based on this method, a non-faradic current and faradic current could be identified and thereafter separated by a capacitance simulation. This experiment was performed in a TL-saturated sulfuric acid electrolyte to minimize the effect of the TL mass transfer. Based on the mass transfer–free TL electrohydrogenation experimental results, the exchange current densities of the TL electrohydrogenation on the Pt/C were 0.48, 0.49, 0.72, and 0.8 mA cm−2 at 25, 40, 50, and 60 °C, respectively. We found that the carbon support has a high impact towards the TL electrohydrogenation on the Pt-supported material. The carbon material works as a sponge by absorbing TL from the solution, and providing a large TL coverage for the Pt surface. Finally, a Tafel plot of the TL electrohydrogenation on the Pt/C catalyst was obtained and the kinetic performance was determined. The apparent active energy of the TL electrohydrogenation on the Pt/C was then calculated as 13.1 kJ mol−1.

Graphical Abstract

Keywords

Electrocatalyst Energy carrier Toluene Electrohydrogenation Water electrolysis Exchange current density 

Notes

Funding Information

This study was supported by the Council for Science, Technology, and Innovation (CSTI); Cross-ministerial Strategic Innovation Promotion Program (SIP); and “energy carrier” (funding agency: JST). The Institute of Advanced Sciences (IAS) at YNU is supported by the MEXT Program for Promoting the Reform of National Universities.

References

  1. 1.
    S. Mitsushima, Y. Takakuwa, K. Nagasawa, Y. Sawaguchi, Y. Kohno, K. Matsuzawa, Z. Awaludin, A. Kato, Y. Nishiko, Membrane electrolysis of toluene hydrogenation with water decomposition for energy carrier synthesis. Electrocatalysis 7(2), 127–131 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Inami, H. Ogihara, I. Yamanaka, Selective electrohydrogenation of toluene to methylcyclohexane using carbon-supported non-platinum electrocatalysts in the hydrogen storage system. Chem. Select 2, 1939 (2017)Google Scholar
  3. 3.
    M. Wakisaka, M. Kunitake, Direct electrochemical hydrogenation of toluene at Pt electrodes in a microemulsion electrolyte solution. Electrochem. Commun. 64, 5–8 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Inami, H. Ogihara, I. Yamanaka, Effects of carbon supports on Ru electrocatalysis for the electrohydrogenation of toluene to methylcyclohexane. Electrocatalysis 9(2), 204–211 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Fukazawa, K. Takano, Y. Matsumura, K. Nagasawa, S. Mitsushima, M. Atobe, Electrocatalytic hydrogenation of toluene using a proton exchange membrane reactor: Influence of catalyst materials on product selectivity. Bull. Chem. Soc. Jpn 91(6), 897–899 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Stanley, I. anger, S. Yurchak, Electrochemical reduction of the benzene ring by electrogenerative hydrogenation. J. Electrochem. Soc. 9, 1228 (1969)Google Scholar
  7. 7.
    S.H. Langer, S.J. Pietsch, G.P. Sakellaropoulos, Electrogenerative chemical reactors. Energy 4(2), 225–233 (1979)CrossRefGoogle Scholar
  8. 8.
    F. Montilla, E. Morallon, J.L. Vazquez, Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions. Electrochim. Acta 47(27), 4399–4406 (2002)CrossRefGoogle Scholar
  9. 9.
    F. Montilla, F. Huerta, E. Morallon, J.L. Vazquez, Electrochemical behaviour of benzene on platinum electrodes. Electrochim. Acta 45(25-26), 4271–4277 (2000)CrossRefGoogle Scholar
  10. 10.
    G. Jerkiewicz, M. DeBlois, Z. Radovic-Hrapovic, J.P. Tessier, F. Perreault, J. Lessard, Underpotential deposition of hydrogen on benzene-modified Pt(111) in aqueous H2SO4. Langmuir 21(8), 3511–3520 (2005)CrossRefGoogle Scholar
  11. 11.
    T. Hartung, H. Baltruschat, Differential electrochemical mass spectrometry using smooth electrodes: Adsorption and hydrogen/deuterium exchange reactions of benzene on platinum. Langmuir 6(5), 953–957 (1990)CrossRefGoogle Scholar
  12. 12.
    M. DeBlois, J. Lessard, G. Jerkiewicz, Influence of benzene on the HUPD and anion adsorption on Pt(110), Pt(100) and Pt(111) electrodes in aqueous H2SO4. Electrochim. Acta 50(16-17), 3517–3523 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Hartung, U. Schmiemann, I. Kamphausen, H. Baltruschat, Electrodesorption from single-crystal electrodes: Analysis by differential electrochemical mass spectrometry. Anal. Cham. 63(1), 44–48 (1991)CrossRefGoogle Scholar
  14. 14.
    U. Schmiemann, H. Baltruschat, The influence of the single-crystal orientation on the electrocatalytic hydrogenation of benzene and the H-D exchange. J. Electroanal. Chem. 347(1-2), 93–109 (1993)CrossRefGoogle Scholar
  15. 15.
    S. Yau, Y. Kim, K. Itaya, In situ scanning tunneling microscopy of benzene adsorbed on Rh(111) and Pt(111) in HF solution. J. Am. Chem. Soc. 118, 7795 (1996)CrossRefGoogle Scholar
  16. 16.
    G.K. Liu, B. Ren, D.Y. Wu, S. Duan, J.F. Li, J.L. Yao, R.A. Gu, Z.Q. Tian, Effect of intrinsic properties of metals on the adsorption behavior of molecules: Benzene adsorption on Pt group metals. J. Phys. Chem. B 110(35), 17498–17506 (2006)CrossRefGoogle Scholar
  17. 17.
    H. Hindarso, S. Ismadji, F. Wicaksana, N. Indraswati, Adsorption of benzene and toluene from aqueous solution onto granular activated carbon. J. Chem. Eng. Data 46(4), 788 (2001)CrossRefGoogle Scholar
  18. 18.
    N. Wibowo, L. Setyadhi, D. Wibowo, J. Setiawan, S. Ismadji, Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. J. Hazard. Mater. 146(1–2), 237 (2007)CrossRefGoogle Scholar
  19. 19.
    N.G. Asenjo, P. Álvarez, M. Granda, C. Blanco, R. Santamaría, R. Menéndez, High performance activated carbon for benzene/toluene adsorption from industrial wastewater. J. Hazard. Mater. 192(3), 1525–1532 (2011)CrossRefGoogle Scholar
  20. 20.
    E. Auer, A. Freund, J. Pietsch, T. Tacke, Carbons as supports for industrial precious metal catalysts. Appl. Catal. A Gen. 173(2), 259–271 (1998)CrossRefGoogle Scholar
  21. 21.
    A. J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and applications, 2nd edn. (Wiley, December 18, 2000), pp. 15Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yun Bao
    • 1
  • Teko W. Napporn
    • 2
    • 3
  • Kensaku Nagasawa
    • 3
  • Shigenori Mitsushima
    • 1
    • 3
    Email author
  1. 1.Green Hydrogen Research CenterYokohama National UniversityYokohamaJapan
  2. 2.Institut de Chimie des Milieux et des Matériaux de Poitiers, UMR 7285 CNRSUniversité de PoitiersPoitiers Cedex 9France
  3. 3.Institute of Advanced SciencesYokohama National UniversityYokohamaJapan

Personalised recommendations