Advertisement

Influence of Surface Treatment on the Kinetics of the Hydrogen Evolution Reaction on Bulk and Porous Nickel Materials

  • Michał GrdeńEmail author
  • Gregory JerkiewiczEmail author
Original Research

Abstract

The hydrogen evolution reaction (HER) occurring at porous Ni foam (Incofoam) and bulk polycrystalline Ni electrodes in 0.50 M aqueous KOH solution is studied at low overpotentials (down to − 0.35 V vs. RHE) in the 277 ≤ T ≤ 308 K range. The experiments are conducted using “as received” and chemically etched Ni foams as well as polished and chemically etched polycrystalline Ni rods for comparative analysis. The chemical etching removes the oxide/hydroxide layer from the material’s surface and modifies its morphology. Scanning electron microscopy and X-ray photoelectron spectroscopy are employed to examine the surface morphology and the surface chemical composition of the Ni foam prior to and after the chemical etching. Cyclic voltammetry and steady-state Tafel polarization measurements are conducted to analyze the electrochemical behavior of the Ni materials. It is found that the electrocatalytic activity of Ni materials towards the HER depends on the material’s pre-treatment. The electrodes subjected to the chemical etching exhibit higher values of the Tafel slope and the exchange current density as compared to non-etched surfaces. The most pronounced effect is observed for the etched Ni foam for which the pre-treatment also affects the activation energy. This behavior is attributed to the removal of surface oxides/hydroxides and to surface roughening brought about by the “chemical etching.” Together, these results reveal that the mechanism of the HER depends on the morphology and chemical state of the Ni material. In addition, it shows that suitable surface treatment can decrease the overpotential required to achieve a desired reaction rate (current density).

Graphical Abstract

Keywords

Nickel foam Polycrystalline nickel Chemical etching Hydrogen evolution reaction Tafel plots Activation energy 

Notes

Acknowledgements

We acknowledge the financial support from the NSERC of Canada and Queen’s University and collaboration with VALE (formerly Vale-Inco). M. Grdeń acknowledges a leave of absence from Warsaw University. This research was conducted as part of the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen’s University and supported by Grant No. RGPNM 477963-2015 under the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Frontiers Program.

References

  1. 1.
    A. Czerwiński, M. Żelazowska, Electrochemical behavior of lead dioxide deposited on reticulated vitreous carbon (RVC). J Power Sources 64(1-2), 29–34 (1997)Google Scholar
  2. 2.
    Z. Rogulski, A. Czerwiński, Cathode modification in the Leclanché cell. J Solid State Electrochem 7(2), 118–121 (2003)Google Scholar
  3. 3.
    J. van Drunen, B.K. Pilapil, Y. Makonnen, D. Beauchemin, B.D. Gates, G. Jerkiewicz, Electrochemically active nickel foams as support materials for nanoscopic platinum electrocatalysts. ACS Appl Mater Interfaces 6(15), 12046–12061 (2014)PubMedGoogle Scholar
  4. 4.
    J. Wang, Reticulated vitreous carbon—a new versatile electrode material. Electrochim Acta 26(12), 1721–1726 (1981)Google Scholar
  5. 5.
    C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou, S. Wang, Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochim Acta 174, 297–301 (2015)Google Scholar
  6. 6.
    M. Schalenbach, A.R. Zeradjanin, O. Kasian, S. Cherevko, K.J.J. Mayrhofer, Int J Electrochem Soc 13, 1173 (2018)Google Scholar
  7. 7.
    S. Fiameni, I. Herraiz-Cardona, M. Musiani, V. Pérez-Herranz, L. Vázquez-Gómez, E. Verlato, The HER in alkaline media on Pt-modified three-dimensional Ni cathodes. Int J Hydrogen Energy 37(14), 10507–10516 (2012)Google Scholar
  8. 8.
    K. Zhang, J. Li, W. Liu, J. Liu, C. Yan, Electrocatalytic activity and electrochemical stability of Ni–S/CeO2 composite electrode for hydrogen evolution in alkaline water electrolysis. Int J Hydrogen Energy 41(48), 22643–22651 (2016)Google Scholar
  9. 9.
    J. van Drunen, T.W. Napporn, B. Kokoh, G. Jerkiewicz, Electrochemical oxidation of isopropanol using a nickel foam electrode. J Electroanal Chem 716, 120–128 (2014)Google Scholar
  10. 10.
    S. Zamponi, A. Czerwiński, G. Gambini, R. Marassi, Linear sweep voltabsorptometry with a finite diffusion space. J Electroanal Chem 332(1-2), 63–71 (1992)Google Scholar
  11. 11.
    M. Chotkowski, Extraction of moderate oxidation state technetium species between 30 % tri-n-butyl phosphate and H2SO4/HNO3. J Radioanal Nucl Ch 307(1), 457–462 (2016)Google Scholar
  12. 12.
    V. Paserin, S. Marcuson, J. Shu, D.S. Wilkinson, CVD technique for Inco nickel foam production. Adv Eng Mater 6(6), 454–459 (2004)Google Scholar
  13. 13.
    F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int J Hydrogen Energy 40(1), 256–274 (2015)Google Scholar
  14. 14.
    K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust 36(3), 307–326 (2010)Google Scholar
  15. 15.
    Z. Xie, P. He, L. Du, F. Dong, K. Dai, T. Zhang, Comparison of four nickel-based electrodes for hydrogen evolution reaction. Electrochim Acta 88, 390–394 (2013)Google Scholar
  16. 16.
    R.M. Abouatallah, D.W. Kirk, S.J. Thorpe, J.W. Graydon, Reactivation of nickel cathodes by dissolved vanadium species during hydrogen evolution in alkaline media. Electrochim Acta 47(4), 613–621 (2001)Google Scholar
  17. 17.
    B.E. Conway, G. Jerkiewicz, Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim Acta 45(25-26), 4075–4083 (2000)Google Scholar
  18. 18.
    S.A.S. Machado, L.A. Avaca, The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim Acta 39(10), 1385–1391 (1994)Google Scholar
  19. 19.
    A. Lasia, A. Rami, Kinetics of hydrogen evolution on nickel electrodes. J Electroanal Chem 294(1-2), 123–141 (1990)Google Scholar
  20. 20.
    J. Divisek, Determination of the kinetics of hydrogen evolution by analysis of the potential-current and potential-coverage curves. J Electroanal Chem 214(1-2), 615–632 (1986)Google Scholar
  21. 21.
    O. Savadogo, The hydrogen evolution reaction in alkaline medium on nickel modified with W042− or Mo042−. Electrochim Acta 37(8), 1457–1459 (1992)Google Scholar
  22. 22.
    H.J. Miao, D.L. Piron, Composite-coating electrodes for hydrogen evolution reaction. Electrochim Acta 38(8), 1079–1085 (1993)Google Scholar
  23. 23.
    I.J. Brown, S. Sotiropoulos, J Appl Electrochem 30(1), 107–111 (2000)Google Scholar
  24. 24.
    N. Krstajić, M. Popović, B. Grgur, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. J Electroanal Chem 512(1-2), 27–35 (2001)Google Scholar
  25. 25.
    T. Benameur, R. Yavari, R. Durand, Electrocatalytic behavior of non-equilibrium b.c.c. nickel. Mater Sci Eng A 181-182, 1145–1149 (1994)Google Scholar
  26. 26.
    J.Y. Huot, Hydrogen evolution and interface phenomena on a nickel cathode in 30 w/o KOH. J Electrochem Soc 136(7), 1933 (1989)Google Scholar
  27. 27.
    A.G. Oshchepkov, A. Bonnefont, V.N. Parmon, E.R. Savinova, On the effect of temperature and surface oxidation on the kinetics of hydrogen electrode reactions on nickel in alkaline media. Electrochim Acta 269, 111–118 (2018)Google Scholar
  28. 28.
    A. Kellenberger, N. Vaszilcsin, W. Brandl, N. Duteanu, Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique. Int J Hydrogen Energy 32(15), 3258–3265 (2007)Google Scholar
  29. 29.
    M.A.V. Devanathan, M. Selvaratnam, Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage. Trans Faraday Soc 56, 1820 (1960)Google Scholar
  30. 30.
    I. Bianchi, E. Guerrini, S. Trasatti, Electrocatalytic activation of Ni for H2 evolution by spontaneous deposition of Ru. Chem Phys 319(1-3), 192–199 (2005)Google Scholar
  31. 31.
    Z. Liang, H.S. Ahn, H.S., A.J. Bard, A study of the mechanism of the hydrogen evolution reaction on nickel by surface interrogation scanning electrochemical microscopy. J Am Chem Soc 139(13), 4854–4858 (2017)PubMedGoogle Scholar
  32. 32.
    M.F. Kibria, M.S. Mridha, A.H. Khan, Electrochemical studies of a nickel electrode for the hydrogen evolution reaction. Int J Hydrogen Energy 20(6), 435–440 (1995)Google Scholar
  33. 33.
    G. Kreysa, B. Håkansson, P. Ekdunge, Kinetic and thermodynamic analysis of hydrogen evolution at nickel electrodes. Electrochim Acta 33(10), 1351–1357 (1988)Google Scholar
  34. 34.
    A.P. Brown, M. Krumpelt, R.O. Loutfy, N.P. Yao, The effect of surface roughness on the hydrogen evolution reaction kinetics with mild steel and nickel cathodes. Electrochim Acta 27(5), 557–560 (1982)Google Scholar
  35. 35.
    D.S. Hall, C. Bock, B.R. MacDougall, The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution. J Electrochem Soc 160(3), F235–F243 (2013)Google Scholar
  36. 36.
    A.C. Chialvo, M.R. Gennero de Chialvo, Electrocatalytic activity of nickel black electrodes for the hydrogen evolution reaction in alkaline solutions. J Appl Electrochem 21(5), 440–445 (1991)Google Scholar
  37. 37.
    J.O.'.M. Bockris, E.C. Potter, The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. J Chem Phys 20(4), 614–628 (1952)Google Scholar
  38. 38.
    R. Palaniappan, G.G. Botte, Effect of ammonia on Pt, Ru, Rh, and Ni cathodes during the alkaline hydrogen evolution reaction. J Phys Chem C 117(34), 17429–17441 (2013)Google Scholar
  39. 39.
    C. González-Buch, I. Herraiz-Cardona, E. Ortega, J. García-Antón, V. Pérez-Herranz, Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int J Hydrogen Energy 38(25), 10157–10169 (2013)Google Scholar
  40. 40.
    M.A. McArthur, L. Jorge, S. Coulombe, S. Omanovic, Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte. J Power Sources 266, 365–373 (2014)Google Scholar
  41. 41.
    L. Angely, G. Bronoel, G. Peslerbe, Relation between nickel crystalline structures and their electrocatalytic properties. J Electroanal Chem 96(2), 203–208 (1979)Google Scholar
  42. 42.
    J.L. Weininger, M.W. Breiter, Hydrogen evolution and surface oxidation of nickel electrodes in alkaline solution. J Electrochem Soc 111(6), 707 (1964)Google Scholar
  43. 43.
    D.M. Soares, O. Teschke, I. Torriani, Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. J Electrochem Soc 139(1), 98 (1992)Google Scholar
  44. 44.
    Y. Choquette, L. Brossard, A. Lasia, H. Ménard, Investigation of hydrogen evolution on Raney-Nickel composite-coated electrodes. Electrochim Acta 35(8), 1251–1256 (1990)Google Scholar
  45. 45.
    C.A. Marozzi, A.C. Chialvo, Development of electrode morphologies of interest in electrocatalysis. Electrochim Acta 46(6), 861–866 (2001)Google Scholar
  46. 46.
    B. Pierozynski, T. Mikolajczyk, I.M. Kowalski, Hydrogen evolution at catalytically-modified nickel foam in alkaline solution. J Power Sources 271, 231–238 (2014)Google Scholar
  47. 47.
    M. Grdeń, M. Alsabet, G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams. ACS Appl Mater Interfaces 4(6), 3012–3021 (2012)PubMedGoogle Scholar
  48. 48.
    A.F.B. Barbosa, V.L. Oliveira, J. van Drunen, G. Tremiliosi-Filho, Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: temperature influence and reaction mechanism. J Electroanal Chem 746, 31–38 (2015)Google Scholar
  49. 49.
    J. van Drunen, A.F.B. Barbosa, G. Tremiliosi-Filho, The formation of surface oxides on nickel in oxalate-containing alkaline media. Electrocatalysis 6(5), 481–491 (2015)Google Scholar
  50. 50.
    D.S. Hall, C. Bock, B.R. MacDougall, An oxalate method for measuring the surface area of nickel electrodes. J Electrochem Soc 161(12), H787–H795 (2014)Google Scholar
  51. 51.
    A. Kellenberger, N. Vaszilcsin, W. Brandl, J Solid State Electrochem 11, 84 (2007)Google Scholar
  52. 52.
    M.J. Gira, K.P. Tkacz, J.R. Hampton, Physical and electrochemical area determination of electrodeposited Ni, Co, and NiCo thin films. Nano Converg 3(1), 6–1 (2016)PubMedPubMedCentralGoogle Scholar
  53. 53.
    J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3), J23 (2005)Google Scholar
  54. 54.
    M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 1: formation of α-Ni(OH)2 in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 2(4), 317–330 (2011)Google Scholar
  55. 55.
    P. Zoltowski, The capacity of monocrystalline nickel electrode in potassium hydroxide solution at low hydrogen overpotentials. Electrochim Acta 38(14), 2129–2133 (1993)Google Scholar
  56. 56.
    J. van Drunen, B. Brandy Kinkead, M.C.P. Wang, E. Sourty, B.D. Gates, G. Jerkiewicz, A.C.S. Appl, Comprehensive structural, surface-chemical and electrochemical characterization of nickel-based metallic foams. Mater. Inter. 5(14), 6712–6722 (2013)Google Scholar
  57. 57.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7), 2717–2730 (2011)Google Scholar
  58. 58.
    M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 2: formation of β-Ni(OH)2 and NiO in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 5(2), 136–147 (2014)Google Scholar
  59. 59.
    M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 3: formation of β-NiOOH in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 6(1), 60–71 (2015)Google Scholar
  60. 60.
    B. Beden, A. Bewick, The anodic layer on nickel in alkaline solution: an investigation using in situ IR spectroscopy. Electrochim Acta 33(11), 1695–1698 (1988)Google Scholar
  61. 61.
    M. Dmochowska, A. Czerwiński, Behavior of a nickel electrode in the presence of carbon monoxide. J Solid State Electrochem 2(1), 16–23 (1998)Google Scholar
  62. 62.
    S. Hrapovic, B.L. Luan, M. D’Amours, G. Vatankhah, G. Jerkiewicz, Morphology, chemical composition, and electrochemical characteristics of colored titanium passive layers. Langmuir 17(10), 3051–3060 (2001)Google Scholar
  63. 63.
    A. Lasia, Hydrogen evolution/oxidation reactions on porous electrodes. J Electroanal Chem 454(1-2), 115–121 (1998)Google Scholar
  64. 64.
    H. Wendt, V. Plzak, Electrocatalytic and thermal activation of anodic oxygen- and cathodic hydrogen-evolution in alkaline water electrolysis. Electrochim Acta 28(1), 27–34 (1983)Google Scholar
  65. 65.
    B.E. Conway, L. Bai, H2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H☆. Int J Hydrogen Energy 11(8), 533–540 (1986)Google Scholar
  66. 66.
    B. Pierozynski, T. Mikolajczyk, Int J Electrochem Soc 10, 10454 (2015)Google Scholar
  67. 67.
    G. Jerkiewicz, Electrochemical Hydrogen Adsorption and Absorption. Part 1: Under-potential Deposition of Hydrogen. Electrocatalysis 1(4), 179–199 (2010)Google Scholar
  68. 68.
    G. Jerkiewicz, Hydrogen sorption ATIN electrodes. Prog Surf Sci 57(2), 137–186 (1998)Google Scholar
  69. 69.
    B.E. Conway, J. Barber, S. Morin, Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes. Electrochim Acta 44(6-7), 1109–1125 (1998)Google Scholar
  70. 70.
    N. Krstajić, M. Popović, B. Grgur, M. Vojnović, D. Šepa, On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. J Electroanal Chem 512(1-2), 16–26 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of WarsawWarsawPoland
  2. 2.Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
  3. 3.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations