Advertisement

Methanol Electrooxidation on Nickel Nanoparticles Decorating Graphite Flakes Surface

  • Yunier Garcia-Basabe
  • Renan Gustavo Coelho De Souza Dos Reis
  • Rafael Otoniel Ribeiro Rodrigues da Cunha
  • Dunieskys Gonzalez Larrude
  • Kelly Daiane Sossmeier
  • Jose Ricardo Cezar SalgadoEmail author
Original Research

Abstract

In the present work, a simple approach was proposed to produce nanocomposites of nickel nanoparticles decorating graphite flake surface (Ni-NP/graphite) from a ball milling method for methanol electrooxidation reaction. Nickel nanoparticles (Ni-NPs) were obtained after milling for 40 h at 400 rpm. The nanocomposites were prepared blending Ni-NPs and graphite flakes and milling at different ball rotation speeds (100, 200, 300, and 400 rpm). Good agreement between scanning transmission electron microscopy and X-ray diffraction results was found, reporting average particle diameter size of 4.9 nm and average crystallite size of 5.5 nm for Ni-NPs. The methanol electrocatalytic activity and stability of Ni-NPs/graphite nanocomposites were evaluated using cyclic voltammetry and chronoamperometry techniques. The possible methanol electrooxidation mechanism in Ni-NP/graphite nanocomposites was established from deconvolution of the anodic parts of voltammetric curves. The more efficient electrocatalytic activity and stability was found for Ni-NPs/graphite nanocomposite prepared using lower rotation speed (100 rpm). This behavior is associated to the loss of graphite crystallinity and consequently decreasing of its electronic conductivity with the increase of the ball milling energy which is directly related to the rotation speed during decoration procedure.

Graphical Abstract

Keywords

Nickel nanoparticle Ball milling Surface decoration Nanocomposite Microstructural parameters Methanol electrooxidation 

Notes

Acknowledgments

The STEM image processing was kindly provided by Eric Cardona Romani postdoc position in Department of Physic PUC-Rio. The SEM and EDS experiments were provided by MackGraphe Laboratory of the Universidade Presbiteriana Mackenzie of São Paulo supported by state agency FAPESP (SPEC project 2012/50259-8). The valuable help of Fabio Plut Fernandes providing the Ni powder is also kindly acknowledged.

Funding Information

This work was supported by the Brazilian agency CNPq (Project No. 478487/2013-4).

Supplementary material

12678_2019_578_MOESM1_ESM.docx (86 kb)
ESM 1 (DOCX 85 kb)

References

  1. 1.
    C. Petit, A. Taleb, M.P. Pileni, Adv. Mater. 10, 259 (1998)CrossRefGoogle Scholar
  2. 2.
    N. Toshima, T. Yonezawa, New J. Chem. 22, 1179 (1998)CrossRefGoogle Scholar
  3. 3.
    G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assunção, J. Rosa, P.V. Baptista, Sensors 12, 1657 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    X. Zou, Y. Zhang, Chem.Soc.Rev. 44, 5148 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    K. McNamara, S.A.M. Tofail, Adv. Phys. X 2, 54 (2017)Google Scholar
  6. 6.
    D. Sharma, R. Jha, J. Alloys Compd. 698, 532 (2017)CrossRefGoogle Scholar
  7. 7.
    W.-C. Hsu, S.C. Chen, P.C. Kuo, C.T. Lie, W.S. Tsai, Mater. Sci. Eng. A 111, 142 (2004)CrossRefGoogle Scholar
  8. 8.
    Y.I. Kim, D. Kim, C.S. Lee, Physica B 337, 42 (2003)CrossRefGoogle Scholar
  9. 9.
    W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Sci. Technol. Adv. Mater. 16, 1 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Behrens, Catal. Today 246, 46 (2015)CrossRefGoogle Scholar
  11. 11.
    R.M. Freire, T.S. Ribeiro, I.F. Vasconcelos, J.C. Denardin, E.B. Barros, M. Giuseppe, L. Carbone, S.E. Mazzetto, P.B.A. Fechine, J. Nanopart. Res. 15, 1 (2013)CrossRefGoogle Scholar
  12. 12.
    S.S. Türkyılmaz, N. Güy, M. Özacar, J. Photochem, Photobiol. A 341, 39 (2017)Google Scholar
  13. 13.
    F. Alonso, P. Riente, J.A. Sirvent, M. Yus, Appl. Catal. A 378, 42 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, D.-L. Peng, D. Lin, X. Luo, Nanotechnology 18, 1 (2007)Google Scholar
  15. 15.
    M. Aghazadeh, A.N. Golikand, M. Ghaemi, Int. J. Hydrog. Energy 36, 8674 (2011)CrossRefGoogle Scholar
  16. 16.
    C. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K.C.-W. Wu, J. Kim, Y. Yamauchi, Acc. Chem. Res. 51, 1764 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    J.F. de Carvalho, S.N. de Medeiros, M.A. Morales, A.L. Dantas, A.S. Carriço, Appl. Surf. Sci. 275, 84 (2013)CrossRefGoogle Scholar
  18. 18.
    T. Tsuzuki, P.G. Mccormick, J. Mater. Sci. 39, 5143 (2004)CrossRefGoogle Scholar
  19. 19.
    C. Xu, S. De, M. Ojeda, R. Luque, Chem. Commun. 51, 6698 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Afkham, R. Azari Khosroshahi, R. Taherzadeh Mousavian, D. Brabazon, R. Kheirifard, Part. Sci. Technol. 36, 72 (2018)CrossRefGoogle Scholar
  21. 21.
    S. Sun, H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    T.P. Yadav, R.M. Yadav, D.P. Singh, Nanosci. Nanotechnol. 2, 22 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.S. Yoon, S.H. Jee, S.H. Lee, S.C. Nam, Surf. Coat. Technol. 206, 553 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, J. Alloys Compd. 654, 460 (2016)CrossRefGoogle Scholar
  25. 25.
    S. Mahoney, M. Najera, Q. Bai, E.A. Burton, G. Veser, PLoS One 11, e0152010 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    E. Zacharaki, P. Beato, R.R. Tiruvalam, K.J. Andersson, H. Fjellvåg, A.O. Sjåstad, Langmuir 33, 9836 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    N.A. Hampson, M.J. Willars, B.D. McNicol, J. Power Sources 4, 191 (1979)CrossRefGoogle Scholar
  28. 28.
    J.R.C. Salgado, R.G. Duarte, A.M.B. do Rego, A.M. Ferraria, M.G.S. Ferreira, Electrochim. Acta 56, 8509 (2011)CrossRefGoogle Scholar
  29. 29.
    J.R.C. Salgado, R.G. Duarte, L.M. Ilharco, A.M.B. do Rego, A.M. Ferraria, M.G.S. Ferreira, Appl. Catal. A 102, 496 (2012)CrossRefGoogle Scholar
  30. 30.
    J.R.C. Salgado, V.A. Paganin, E.R. Gonzalez, M.F. Montemor, I. Tacchini, A. Ansón, M.A. Salvador, F.M.H.L.R. Figueiredo, M.G.S. Ferreira, Int. J. Hydrog. Energy 38, 910 (2013)CrossRefGoogle Scholar
  31. 31.
    N.A.M. Barakat, M. Motlak, Appl. Catal. B 154–155, 221 (2014)CrossRefGoogle Scholar
  32. 32.
    Z. Liu, X. Zhang, L. Hong, Electrochem. Commun. 11, 925 (2009)CrossRefGoogle Scholar
  33. 33.
    I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M.G. Mahjani, Int. J. Hydrog. Energy 33, 367 (2008)CrossRefGoogle Scholar
  34. 34.
    I. Danaee, M. Jafarian, F. Gobal, M.G. Mahjani, Electrochim. Acta 55, 2093 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Zhang, Z. Yan, Q. Sun, J. Xie, J. Jing, New J. Chem. 36, 2533 (2012)CrossRefGoogle Scholar
  36. 36.
    Y. Zhao, X. Yang, J. Tian, F. Wang, L. Zhang, Int. J. Hydrog. Energy 35, 3249 (2010)CrossRefGoogle Scholar
  37. 37.
    X. Cui, W. Guo, M. Zhou, Y. Yang, Y. Li, P. Xiao, Y. Zhang, X. Zhang, ACS Appl. Mater. Interfaces 7, 493–503 (2014)PubMedCrossRefGoogle Scholar
  38. 38.
    M. Guo, Y. Yu, J. Hu, Electrocatalysis 8, 392 (2017)CrossRefGoogle Scholar
  39. 39.
    R.N. Singh, A. Singh, Int. J. Hydrog. Energy 34, 2052 (2009)CrossRefGoogle Scholar
  40. 40.
    G.S. Ferdowsi, S.A. Seyedsadjadi, A. Ghaffarinejad, J. Nanostruct. Chem. 5, 17 (2015)CrossRefGoogle Scholar
  41. 41.
    L. Zhao, X.-L. Sui, J.-L. Li, J.-J. Zhang, L.-M. Zhang, Z.-B. Wang, ACS Appl. Mater. Interfaces 8, 16026 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Y. Zhai, Z. Zhu, X. Lu, Z. Zhou, J. Shao, H.S. Zhou, ACS Appl. Energy Mater. 1, 32 (2018)CrossRefGoogle Scholar
  43. 43.
    H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Phys. Chem. 98, 617 (1994)CrossRefGoogle Scholar
  44. 44.
    Y. Lin, X. Cui, C.H. Yen, C.M. Wai, Langmuir 21, 11474 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    M.C.L. dos Santos, R.M. Dutra, V.A. Ribeiro, E.V. Spinacé, O.A. Neto, Int. J. Electrochem. Sci. 12, 3549 (2017)CrossRefGoogle Scholar
  46. 46.
    A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. 56, 174 (1994)CrossRefGoogle Scholar
  47. 47.
    E.J. Mittemeijer, U. Welzel, Z. Kristallogr. 232, 552 (2008)Google Scholar
  48. 48.
    A.C.J. Wilson, Mathematical Theory of X-Ray Powder Diffractometry (1963)Google Scholar
  49. 49.
    D.L. Bish, S.A. Howard, J. Appl. Crystallogr. 21, 86 (1988)CrossRefGoogle Scholar
  50. 50.
    A. Le Bail, Powder Diffract. 20, 316 (2005)CrossRefGoogle Scholar
  51. 51.
    D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, J. Magn. Magn. Mater. 225, 30 (2001)CrossRefGoogle Scholar
  52. 52.
    T.D. Shen, W.Q. Ge, K.Y. Wang, M.X. Quan, J.T. Wang, W.D. Wei, C.C. Koch, Nanostruct. Mater. 7, 393 (1996)CrossRefGoogle Scholar
  53. 53.
    R. Hinrichs, M.A.Z. Vasconcellos, W. Österle, C. Prietzel, Mater. Res. 21, e20171000 (2018)CrossRefGoogle Scholar
  54. 54.
    M.S. El-Eskandarany, J. Mater. Eng. Perform. 26, 2974 (2017)CrossRefGoogle Scholar
  55. 55.
    Y. Liang, J. Wei, X. Zhang, J. Zhang, S.P. Jiang, H. Wang, ChemCatChem 8, 1901 (2016)CrossRefGoogle Scholar
  56. 56.
    I.A. Khan, S. Ullah, F. Nasim, M. Choucair, M.A. Nadeem, A. Iqbal, A. Badshah, M.A. Nadeem, Mater. Res. 77, 221 (2016)Google Scholar
  57. 57.
    Q. Yi, J. Zhang, W. Huang, X. Liu, Catal. Commun. 8, 1017 (2007)CrossRefGoogle Scholar
  58. 58.
    A.A. El-Shafei, J. Electroanal. Chem. 471, 89 (1999)CrossRefGoogle Scholar
  59. 59.
    M.E.G. Lyons, J. Electroanal. Chem. 641, 119 (2010)CrossRefGoogle Scholar
  60. 60.
    D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. R. Soc. 471, 20140792 (2014)CrossRefGoogle Scholar
  61. 61.
    A.N. Vyas, M.A. Desai, D.M. Phase, R.G. Saratale, J.D. Ambekar, B.B. Kale, H.M. Pathan, S.D. Sartale, New J. Chem. 43, 2955 (2019)CrossRefGoogle Scholar
  62. 62.
    S.I. Stevanovic, V.V. Panic, A.B. Dekanski, A.V. Tripkovic, V.M. Jovanovic, Phys. Chem. Chem. Phys. 14, 9475 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    H. Sun, Y. Ye, J. Liu, Z. Tian, Y. Cai, P. Li, C. Liang, Chem. Commun. 54, 1563 (2018)CrossRefGoogle Scholar
  64. 64.
    R.M.A. Tehrani, S. Ab Ghani, Fuel Cells 9, 761 (2009)CrossRefGoogle Scholar
  65. 65.
    N.A.M. Barakat, M.A. Yassin, F.S. Al-Mubaddel, M.T. Amen, Appl. Catal. A 555, 148 (2018)CrossRefGoogle Scholar
  66. 66.
    Y. Suda, Y. Shimizu, M. Ozaki, H. Tanoue, H. Takikawa, H. Ue, K. Shimizu, Y. Umeda, Mater. Today Commun. 3, 96 (2015)CrossRefGoogle Scholar
  67. 67.
    R. Kiyani, M.J. Parnian, S. Rowshanzamir, Int. J. Hydrog. Energy 42, 23070 (2017)CrossRefGoogle Scholar
  68. 68.
    B.-M. Thamer, M.H. El-Newehy, N.A.M. Barakat, M.H. Abdelkareem, S.S. Al-Deyab, H.Y. Kim, Int. J. Hydrog. Energy 40, 14845 (2015)CrossRefGoogle Scholar
  69. 69.
    L.-M. Zhang, Z.-B. Wang, J.-J. Zhang, X.-L. Sui, L. Zhao, D.-M. Gu, Carbon 93, 1050 (2015)CrossRefGoogle Scholar
  70. 70.
    Y. Zhao, Y. Wang, X. Cheng, L. Dong, Y. Zhang, J. Zang, Carbon 67, 409 (2014)CrossRefGoogle Scholar
  71. 71.
    O.V. Gorbunova, A.V. Vasilevich, O.N. Baklanova, A.B. Arbuzov, Y.S. Poserkova, V.A. Likholobov, Procedia Eng. 113, 484 (2015)CrossRefGoogle Scholar
  72. 72.
    G. Chen, C. Wu, W. Weng, D. Wu, W. Yan, Polymer 44, 1781 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yunier Garcia-Basabe
    • 1
  • Renan Gustavo Coelho De Souza Dos Reis
    • 1
  • Rafael Otoniel Ribeiro Rodrigues da Cunha
    • 1
  • Dunieskys Gonzalez Larrude
    • 2
  • Kelly Daiane Sossmeier
    • 1
  • Jose Ricardo Cezar Salgado
    • 1
    Email author
  1. 1.Instituto Latino Americano de Ciências da Vida e da NaturezaUniversidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil
  2. 2.MackGrapheUniversidade Presbiteriana MackenzieSão PauloBrazil

Personalised recommendations