Advertisement

Electrocatalysis

, Volume 11, Issue 1, pp 1–13 | Cite as

Controlled-Atmosphere Flame Fusion Growth of Nickel Poly-oriented Spherical Single Crystals—Unraveling Decades of Impossibility

  • Derek Esau
  • Fabian M. Schuett
  • K. Liam Varvaris
  • Jonas Björk
  • Timo JacobEmail author
  • Gregory JerkiewiczEmail author
Original Research

Abstract

Experimental research using monocrystalline electrodes has been a hallmark of interfacial electrochemistry and electrocatalysis since 1980. However, it has been limited to mainly noble metals because of the challenges encountered when using non-noble metals. We report on the development of controlled-atmosphere flame fusion that enables the growth of spherical single crystals of non-noble metals in controlled gaseous atmosphere and without the formation of surface or bulk oxides. The set-up is used to grow nickel single crystals the structure of which is verified using Laue X-ray back-scattering and scanning electron microscopy (SEM). The equilibrium shape of the nickel single crystals calculated using Wulff construction agrees with the actual shape determined using SEM. Electrochemical measurements in aqueous NaOH solution using the monocrystalline Ni electrodes reveal cyclic voltammetry features unique to their surface structure. The methodology, transferrable to other metals, creates enormous research opportunities in interfacial electrochemistry, electrocatalysis, surface science, gas-phase catalysis, and corrosion science.

Graphical Abstract

Keywords

Nickel single crystal Controlled atmosphere flame fusion Wulff construction Low miller index surfaces Cyclic voltammetry 

Notes

Acknowledgments

We gratefully acknowledge the technical support of Charles Hearns and Patrick Given in designing and manufacturing the stainless-steel chamber bottom. We thank Drs. Gabriele Schatte and Kevin McEleney for their assistance in acquiring scanning electron microscope images. We thank Profs. Christophe Coutanceau and Stève Baranton for their assistance in manufacturing the quartz chamber.

Author Contributions

D.E. and F.M.S. carried out all the experiments, developed the CAFF set-up and method, analyzed the data, and wrote the first version of the manuscript with equal contributions. K.L.V contributed to materials synthesis and to the electrochemical measurements. J.B. carried out the DFT calculations of the Wulff construction under the guidance of T.J. G.J. and T.J. conceived the experiments, supervised the project, analyzed the results, and contributed to the manuscript writing. All authors contributed to the discussion section and the finalization of the text and figures of the manuscript.

Funding information

This research was conducted as part of the Engineered Nickel Catalysts for Electrochemical Clean Energy project administered from Queen’s University and supported by grant number RGPNM 477963-2015 under the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Frontiers Program. This work was supported by MITACS through the Globalink Research Award and the DAAD which made the collaboration between Queen’s University and Ulm University possible. This work was funded by the German Research Foundation (DFG) under project ID 390874152 (POLiS Cluster of Excellence) as well as the Sonderforschungsbereich (collaborative research centre) SFB-1316.

Compliance with Ethical Standards

Competing Interests

The authors declare no competing interests.

Other Comments

The research presented in this manuscript was initially submitted to Science on June 18, 2019 and subsequently to Nature Materials on September 12, 2019. The research was presented at the 70th Annual Meeting of the International Society of Electrochemistry in Durban, South Africa, on August 8, 2019 (the respective abstract was published on the ISE website on June 25, 2019).

Supplementary material

12678_2019_575_MOESM1_ESM.docx (2.3 mb)
ESM 1 (DOCX 2319 kb).

References

  1. 1.
    M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 1: formation of α-Ni(OH)2 in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 2, 317–330 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Kleperis, G. Wójcik, A. Czerwinski, J. Skowronski, M. Kopczyk, M. Beltowska-Brzezinska, Electrochemical behavior of metal hydrides. J. Solid State Electrochem. 5, 229–249 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J. Chem. Soc. Perkin Trans 2, 1396–1403 (1972)CrossRefGoogle Scholar
  4. 4.
    H. Wendt, G. Imarisio, Nine years of research and development on advanced water electrolysis. A review of the research programme of the Commission of the European Communities. J. Appl. Electrochem. 18, 1–14 (1988)CrossRefGoogle Scholar
  5. 5.
    S.P. Jiang, S.H. Chan, A review of anode materials development in solid oxide fuel cells. J. Mater. Sci. 39, 4405–4439 (2004)CrossRefGoogle Scholar
  6. 6.
    S.-H. Lee, C.E. Tracy, J.R. Pitts, Effect of nonstoichiometry of nickel oxides on their supercapacitor behavior. Electrochem. Solid-State Lett 7, A299–A301 (2004)CrossRefGoogle Scholar
  7. 7.
    K. Nakaoka, J. Ueyama, K. Ogura, Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films. J. Electroanal. Chem. 571, 93–99 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 3: formation of β-NiOOH in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 6, 60–71 (2015)CrossRefGoogle Scholar
  9. 9.
    A.K. Shukla, S. Venugopalan, B. Hariprakash, Nickel-based rechargeable batteries. J. Power Sources 100, 125–148 (2001)CrossRefGoogle Scholar
  10. 10.
    S.L. Medway, C.A. Lucas, A. Kowal, R.J. Nichols, D. Johnson, In situ studies of the oxidation of nickel electrodes in alkaline solution. J. Electroanal. Chem. 587, 172–181 (2006)CrossRefGoogle Scholar
  11. 11.
    M. Grdeń, K. Klimek, A. Czerwiński, A quartz crystal microbalance study on a metallic nickel electrode. J. Solid State Electrochem. 8, 390–397 (2004)CrossRefGoogle Scholar
  12. 12.
    K. Juodkazis, J. Juodkazyte, R. Vilkauskaite, V. Jasulaitiene, Nickel surface anodic oxidation and electrocatalysis of oxygen evolution. J. Solid State Electrochem. 12, 1469–1479 (2008)CrossRefGoogle Scholar
  13. 13.
    M.P. Soriaga, Ultra-high vacuum techniques in the study of single-crystal electrode surfaces. Prog. Surf. Sci 39, 325–443 (1992)CrossRefGoogle Scholar
  14. 14.
    E. Herrero, L.J. Buller, H.D. Abruña, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 101, 1897–1930 (2001)CrossRefPubMedGoogle Scholar
  15. 15.
    S.-L. Yau, F.-R.F. Fan, T.P. Moffat, A.J. Bard, In situ scanning tunneling microscopy of Ni(100) in 1 M NaOH. J. Phys. Chem. 98, 5493–5499 (1994)CrossRefGoogle Scholar
  16. 16.
    J.L. Weininger, M.W. Breiter, Effect of crystal structure on the Anodic Oxidation of Nickel. J. Electrochem. Soc. 110, 484–490 (1963)CrossRefGoogle Scholar
  17. 17.
    T. Suzuki, T. Yamada, K. Itaya, In situ electrochemical scanning tunneling microscopy of Ni(111), Ni(100), and sulfur-modified Ni(100) in acidic solution. J. Phys. Chem. 100, 8954–8961 (1996)CrossRefGoogle Scholar
  18. 18.
    J. Clavilier, The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region. J. Electroanal. Chem. Interfacial Electrochem. 107, 211–216 (1980)CrossRefGoogle Scholar
  19. 19.
    J. Clavilier in Interfacial electrochemistry: theory: experiment, and applications, ch. 14, ed. by A. Wieckowski (Marcel Dekker Inc., New York, 1999)Google Scholar
  20. 20.
    J. Clavilier, R. Faure, G. Guinet, R. Durand, Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. 107, 205–209 (1980)CrossRefGoogle Scholar
  21. 21.
    L.H. Dall’Antonia, J. Perez, G. Tremiliosi-Filho, E.R. Gonzalez, Metodologia para o crescimento de esferas monocristalinas de metais nobres. Quim. Nova 22, 760–764 (1999)CrossRefGoogle Scholar
  22. 22.
    N. Arulmozhi, G. Jerkiewicz, Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis research. Part 1: semi-automated crystal growth. Electrocatalysis 7, 507–518 (2016)CrossRefGoogle Scholar
  23. 23.
    N. Arulmozhi, G. Jerkiewicz, Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis research. Part 2: orientation, cutting, and annealing. Electrocatalysis 8, 399–413 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Wulff, X.X.V. Zur, Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Krist. Cryst. Mater. 34, 449–530 (1901)Google Scholar
  25. 25.
    A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, et al., The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29(30 pp), 273,002 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11,169–11,186 (1996)CrossRefGoogle Scholar
  27. 27.
    P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17,953–17,979 (1994)CrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    N. Arulmozhi, D. Esau, J. van Drunen, G. Jerkiewicz, Design and development of instrumentations for the preparation of platinum single crystals for electrochemistry and electrocatalysis eesearch part 3: final treatment, electrochemical measurements, and recommended laboratory practices. Electrocatalysis 9, 113–123 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Tian, C. Cousins, D. Beauchemin, Y. Furuya, A. Ohma, G. Jerkiewicz, Influence of the working and counter electrode surface area ratios on the dissolution of platinum under electrochemical conditions. ACS Catal. 6, 5108–5116 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Grdeń, M. Alsabet, G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams. ACS Appl. Mater. Interfaces 4, 3012–3021 (2012)CrossRefPubMedGoogle Scholar
  32. 32.
    J. Brillo, I. Egry, Density determination of liquid copper, nickel, and their alloys. Int. J. Thermophys. 24, 1155–1170 (2003)CrossRefGoogle Scholar
  33. 33.
    J. Brillo, I. Egry, Surface tension of nickel, copper, iron and their binary alloys. J. Mater. Sci. 40, 2213–2216 (2005)CrossRefGoogle Scholar
  34. 34.
    M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrochemical growth of surface oxides on nickel. Part 2: formation of β-Ni(OH)2 and NiO in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 5, 136–147 (2014)CrossRefGoogle Scholar
  35. 35.
    G. Tremiliosi-Filho, G. Jerkiewicz, B.E. Conway, Characterization and significance of the sequence of stages of oxide film formation at platinum generated by strong anodic polarization. Langmuir 8, 658–667 (1992)CrossRefGoogle Scholar
  36. 36.
    A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, In situ scanning tunneling microscopic study of the initial stages of growth and of the structure of the passive film on Ni(111) in 1 mM NaOH(aq). J. Solid State Electrochem. 9, 337–346 (2005)CrossRefGoogle Scholar
  37. 37.
    N. Hirai, H. Okada, S. Hara, In-situ electrochemical atomic force microscopy with atomic resolution of Ni(110) in neutral and alkaline aqueous solution. Materials Trans. 44, 727–730 (2003)CrossRefGoogle Scholar
  38. 38.
    A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, In situ STM study of the effect of chloride on passive film on nickel in alkaline solution. J. Electrochem. Soc. 153, B453–B463 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada
  2. 2.Institute of ElectrochemistryUlm UniversityUlmGermany
  3. 3.Department of Physics, Chemistry and BiologyIFM, Linköping UniversityLinköpingSweden
  4. 4.Helmholtz-Institute-Ulm (HIU) Electrochemical Energy StorageUlmGermany
  5. 5.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations