, Volume 11, Issue 1, pp 86–93 | Cite as

DFT Calculations of the Electrochemical Adsorption of Sulfuric Acid Anions on the Pt(110) and Pt(100) Surfaces

  • Juan A. SantanaEmail author
  • Yasuyuki Ishikawa
Original Research


We have studied the electrochemical adsorption of sulfuric acid anions on the Pt(110) and Pt(100) surfaces employing calculations based on the density functional theory. Our results show that bisulfate, as well as hydronium–sulfate ion pairs, can be adsorbed on Pt(110) at electrode potentials below 0.4 V vs. the reversible hydrogen electrode (RHE). On the other hand, only bisulfate is stable on Pt(100) at potentials below 0.6 V (RHE). At a higher potential, the results indicate that only sulfate is stable on these surfaces. The sulfuric acid anions are two-fold coordinated on Pt(110) and Pt(100), which contrasts with the Pt(111) surface where the adsorbed conformation of the anions can change from a two-fold to three-fold coordination. These differences in the coordination of the adsorbed sulfuric acid anions on Pt(111), Pt(110), and Pt(100) could help rationalize the dissimilar voltammetric features of these surfaces in sulfuric acid solutions.

Graphical Abstract



Electrochemical adsorption Surface catalysis Hydrogen fuel cell Computational electrochemistry Anions on metal surfaces 


Author Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Information

This work was supported by the 2018–2019 Start-Up funds of the University of Puerto Rico at Cayey. Computational resources were provided by the High-Performance Computing Facility at the University of Puerto Rico, which is supported by an Institutional Development Award (IDeA) INBRE Grant No. P20GM103475 from the National Institute of General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH), and the Bioinformatics Research Core of the INBRE.

Compliance with Ethical Standards


Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIGMS or NIH.


  1. 1.
    B. Braunschweig, A. Wieckowski, J. Electroanal. Chem. 716, 136 (2014)Google Scholar
  2. 2.
    J. Drnec, D.A. Harrington, O.M. Magnussen, Current Opinion in Electrochemistry 4, 69 (2017)Google Scholar
  3. 3.
    C.H. Wu, T.A. Pascal, A. Baskin, H. Wang, H.-T. Fang, Y.-S. Liu, Y.-H. Lu, J. Guo, D. Prendergast, M.B. Salmeron, J. Am. Chem. Soc. 140, 16237 (2018)PubMedGoogle Scholar
  4. 4.
    T. Kondo, T. Masuda, N. Aoki, K. Uosaki, J. Phys. Chem. C 120, 16118 (2016)Google Scholar
  5. 5.
    J. Tymoczko, W. Schuhmann, A.S. Bandarenka, Electrochem. Commun. 27, 42 (2013)Google Scholar
  6. 6.
    B. Braunschweig, P. Mukherjee, D.D. Dlott, A. Wieckowski, J. Am. Chem. Soc. 132, 14036 (2010)PubMedGoogle Scholar
  7. 7.
    B. Braunschweig, W. Daum, Langmuir 25, 11112 (2009)PubMedGoogle Scholar
  8. 8.
    I. Y. Zhang, G. Zwaschka, Z. Wang, M. Wolf, R. K. Campen, and Y. Tong, Phys. Chem. Chem. Phys. (2019)Google Scholar
  9. 9.
    G. Zwaschka, M. Wolf, R.K. Campen, Y. Tong, Surf. Sci. 678, 78 (2018)Google Scholar
  10. 10.
    Y. Qian, T. Ikeshoji, Y. Zhao, and M. Otani, CHEMELECTROCHEM n/a (2014)Google Scholar
  11. 11.
    K.-Y. Yeh, N.A. Restaino, M.R. Esopi, J.K. Maranas, M.J. Janik, Catal. Today 202, 20 (2013)Google Scholar
  12. 12.
    Y. Qian, M. Otani, and T. Ikeshoji, Meet. Abstr. MA2012-02, 3767 (2012)Google Scholar
  13. 13.
    R. Jinnouchi, T. Hatanaka, Y. Morimoto, M. Osawa, Phys. Chem. Chem. Phys. 14, 3208 (2012)PubMedGoogle Scholar
  14. 14.
    A. Comas-Vives, J. Bandlow, T. Jacob, Phys. Chem. Chem. Phys. 15, 992 (2012)Google Scholar
  15. 15.
    J.A. Santana, C.R. Cabrera, Y. Ishikawa, Phys. Chem. Chem. Phys. 12, 9526 (2010)PubMedGoogle Scholar
  16. 16.
    S.V. Kalinin, O.E. Dyck, N. Balke Wisinger, S. Neumayer, W.-Y. Tsai, R. Vasudevan, D.B. Lingerfelt, M. Ahmadi, M. Ziatdinov, M.T. McDowell, E. Strelcov, ACS Nano Acsnano, 9b02687 (2019)Google Scholar
  17. 17.
    J.H.K. Pfisterer, Y. Liang, O. Schneider, A.S. Bandarenka, Nature 549, 74 (2017)PubMedGoogle Scholar
  18. 18.
    H.-S. Su, X.-G. Zhang, J.-J. Sun, X. Jin, D.-Y. Wu, X.-B. Lian, J.-H. Zhong, B. Ren, Angew. Chem. Int. Ed. 57, 13177 (2018)Google Scholar
  19. 19.
    M.J. Eslamibidgoli, M.H. Eikerling, Current Opinion in Electrochemistry 9, 189 (2018)Google Scholar
  20. 20.
    X. Zhang, R. S. DeFever, S. Sarupria, and R. B. Getman, J. Chem. Inf. Model. (2019)Google Scholar
  21. 21.
    M. Van den Bossche, E. Skúlason, C. Rose-Petruck, H. Jónsson, J. Phys. Chem. C 123, 4116 (2019)Google Scholar
  22. 22.
    O.M. Magnussen, A. Groß, J. Am. Chem. Soc. 141, 4777 (2019)PubMedGoogle Scholar
  23. 23.
    J.A. Gauthier, S. Ringe, C.F. Dickens, A.J. Garza, A.T. Bell, M. Head-Gordon, J.K. Nørskov, K. Chan, ACS Catal. 9, 920 (2019)Google Scholar
  24. 24.
    A. Groß, S. Sakong, Curr Opin Electrochem 14, 1 (2019)Google Scholar
  25. 25.
    N.G. Hörmann, O. Andreussi, N. Marzari, J. Chem. Phys. 150, 041730 (2019)PubMedGoogle Scholar
  26. 26.
    N.M. Markovic, B.N. Grgur, P.N. Ross, J. Phys. Chem. B 101, 5405 (1997)Google Scholar
  27. 27.
    A. Zolfaghari, G. Jerkiewicz, J. Electroanal. Chem. 467, 177 (1999)Google Scholar
  28. 28.
    N. Hoshi, A. Sakurada, S. Nakamura, S. Teruya, O. Koga, Y. Hori, J. Phys. Chem. B 106, 1985 (2002)Google Scholar
  29. 29.
    R.J. Nichols, in Adsorption of Molecules at Metal Electrodes, ed. by J. Lipkowski, P. N. Ross. (VCH Publisher, New York, 1992), p. 347Google Scholar
  30. 30.
    F.C. Nart, T. Iwasita, M. Weber, Electrochim. Acta 39, 2093 (1994)Google Scholar
  31. 31.
    T. Iwasita, F.C. Nart, A. Rodes, E. Pastor, M. Weber, Electrochim. Acta 40, 53 (1995)Google Scholar
  32. 32.
    T. Iwasita, F.C. Nart, Prog. Surf. Sci. 55, 271 (1997)Google Scholar
  33. 33.
    P.W. Faguy, N. Markovic, J.P.N. Ross, J. Electrochem. Soc. 140, 1638 (1993)Google Scholar
  34. 34.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)Google Scholar
  35. 35.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)PubMedPubMedCentralGoogle Scholar
  36. 36.
    Y. Ishikawa, J.J. Mateo, D.A. Tryk, C.R. Cabrera, J. Electroanal. Chem. 607, 37 (2007)Google Scholar
  37. 37.
    J.A. Santana, J.J. Mateo, Y. Ishikawa, J. Phys. Chem. C 114, 4995 (2010)Google Scholar
  38. 38.
    J.A. Santana, J.J. Saavedra-Arias, Y. Ishikawa, Electrocatalysis 6, 534 (2015)Google Scholar
  39. 39.
    S. Trasatti, Pure Appl. Chem. 58, 955 (1986)Google Scholar
  40. 40.
    G. Jerkiewicz, Electrocatal 1, 179 (2010)Google Scholar
  41. 41.
    Z.-D. He, J. Wei, Y.-X. Chen, E. Santos, W. Schmickler, Electrochim. Acta 255, 391 (2017)Google Scholar
  42. 42.
    Z.-D. He, Y.-X. Chen, E. Santos, W. Schmickler, Angew. Chem. Int. Ed. 57, 7948 (2018)Google Scholar
  43. 43.
    D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, Nature 397, 601 (1999)Google Scholar
  44. 44.
    J.O. Bockris, M. Gamboa-Aldeco, M. Szklarczyk, J. Electroanal. Chem. 339, 355 (1992)Google Scholar
  45. 45.
    A. Lachenwitzer, N. Li, J. Lipkowski, J. Electroanal. Chem. 532, 85 (2002)Google Scholar
  46. 46.
    M. Ito, Surf. Sci. Rep. 63, 329 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Puerto Rico at CayeyCayeyUSA
  2. 2.Department of ChemistryUniversity of Puerto Rico at Rio PiedrasSan JuanUSA

Personalised recommendations