Advertisement

Electrochemical Impedance Spectroscopy Characterization of Silicon-Based Electrodes for Li-Ion Batteries

  • Maciej Ratynski
  • Bartosz HamankiewieczEmail author
  • Michał Krajewski
  • Maciej Boczar
  • Dominika A. Buchberger
  • Andrzej Czerwinski
Original Research
  • 58 Downloads

Abstract

Lithium-ion cells are currently the most promising electrochemical power sources. New high-capacity electrodes made of silicon are presently under intensive study. Besides its high capacity, silicon undergoes a significant volume increase (up to 300%) during lithiation. The main research on the silicon-based electrodes is focused on the nanostructure development and capacity/life cycle measurements. Variations in other electrochemical parameters, SEI layer resistance and charge transfer resistance, are also important and give the information about structural changes and mechanisms of side processes that occur during an electrode lithiation/delithiation. This work presents electrochemical impedance spectroscopy measurements of three silicon–graphite composite electrodes, containing various silicon contents. A clear correlation between the SEI and charge transfer resistances and the active material lithiation level is presented. The effect of the cycle number on the measured parameters is also visible. We present possible mechanisms that lead to observed changes and highlight the requirement of the proper Si-based electrode formation and the correct estimation of operational parameters.

Graphical abstract

Schematic diagram of electrode structure and electrochemical parameters changing during lithiation and cycling

Keywords

Silicon Li-ion Battery Impedance SEI layer Charge transfer Resistance 

Notes

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation program, under grant agreement No 685716.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    R.E.F. Einerhand, High-energy non-aqueous batteries. Andrzej Cisak and Lidia Werblan, Polish Scientific Publishers and Ellis Horwood, Chichester 1993. Adv. Mater. 6(5), 421–422 (2004)CrossRefGoogle Scholar
  2. 2.
    G. Kucinskis, G. Bajars, J. Kleperis, Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66–79 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Ratynski, B. Hamankiewicz, M. Krajewski, M. Boczar, D. Ziolkowska, A. Czerwinski, Impact of natural and synthetic graphite milling energy on lithium-ion electrode capacity and cycle life. Carbon N. Y. 145, 82–89 (2019)CrossRefGoogle Scholar
  4. 4.
    A. Manthiram, An outlook on lithium ion battery technology. ACS Cent. Sci. 3(10), 1063–1069 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    C. Heubner et al., Understanding thickness and porosity effects on the electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 -based cathodes for high energy Li-ion batteries. J. Power Sources 419(December 2018), 119–126 (2019)CrossRefGoogle Scholar
  6. 6.
    N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015)CrossRefGoogle Scholar
  7. 7.
    M.A. Reddy et al., CFx Derived Carbon–FeF2 Nanocomposites for reversible lithium storage. Adv. Energy Mater. 3(3), 308–313 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Badway et al., Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem. Mater. 19(17), 4129–4141 (2007)CrossRefGoogle Scholar
  9. 9.
    T. Li, Z.X. Chen, Y.L. Cao, X.P. Ai, H.X. Yang, Transition-metal chlorides as conversion cathode materials for Li-ion batteries. Electrochim. Acta 68, 202–205 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Menachem, D. Golodnitsky, E. Peled, Effect of mild oxidation of natural graphite (NG7) on anode-electrolyte thermal reactions. J. Solid State Electrochem. 5(2), 81–87 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Koh, T. Nakajima, Electrochemical behaviors of carbon alloy BCx and of BCx-coated graphite prepared by chemical vapor deposition. Electrochim. Acta 44(11), 1713–1722 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-ion batteries: science and technologies. 2009.CrossRefGoogle Scholar
  13. 13.
    R.J. Brodd, Batteries for sustainability (Springer Science, New York, 2013)CrossRefGoogle Scholar
  14. 14.
    X. Sun, Y. Liu, J. Zhang, L. Hou, J. Sun, C. Yuan, Facile construction of ultrathin SnOx nanosheets decorated MXene (Ti3C2) nanocomposite towards Li-ion batteries as high performance anode materials. Electrochim. Acta 295, 237–245 (2019)CrossRefGoogle Scholar
  15. 15.
    A. Ulvestad, J.P. Mæhlen, M. Kirkengen, Silicon nitride as anode material for Li-ion batteries: understanding the SiNx conversion reaction. J. Power Sources 399, 414–421 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Xia et al., Theoretical study of electron transport properties of SimCn/Cn clusters tethered on graphene nanoribbon. Ceram. Int. 45(1), 530–538 (2019)CrossRefGoogle Scholar
  17. 17.
    M. Martín-Gil, M.E. Rabanal, A. Várez, A. Kuhn, F. García-Alvarado, Mechanical grinding of Si3N4 to be used as an electrode in lithium batteries. Mater. Lett. 57(20), 3063–3069 (2003)CrossRefGoogle Scholar
  18. 18.
    J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, SiO x -based anodes for secondary lithium batteries. Solid State Ionics 152–153, 125–129 (2002)CrossRefGoogle Scholar
  19. 19.
    T. Yim et al., Effect of binder properties on electrochemical performance for silicon-graphite anode: Method and application of binder screening. Electrochim. Acta (2014)Google Scholar
  20. 20.
    C. Pillot, “Lithium ion battery raw material supply & demand 2016-2025,” 2017.Google Scholar
  21. 21.
    H. Jia et al., Reversible storage of lithium in three-dimensional macroporous germanium. Chem. Mater. 26(19), 5683–5688 (Oct. 2014)CrossRefGoogle Scholar
  22. 22.
    N. Hudak and D. Huber, “Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries,” 2011.CrossRefGoogle Scholar
  23. 23.
    H. Tian, F. Xin, X. Wang, W. He, W. Han, High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. J. Mater. 1(3), 153–169 (2015)Google Scholar
  24. 24.
    M.N. Obrovac, L.J. Krause, Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154(2), A103–A108 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Eftekhari, On the theoretical capacity/energy of lithium batteries and their counterparts. ACS Sustain. Chem. Eng. 7(4), 3684–3687 (2019)CrossRefGoogle Scholar
  26. 26.
    M. Ratyński, B. Hamankiewicz, M. Krajewski, M. Boczar, A. Czerwiński, The effect of compressive stresses on a silicon electrode’s cycle life in a Li-ion battery. RSC Adv. 8(40), 22546–22551 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Hansen, E. Quiroga-González, J. Carstensen, H. Föll, Size-dependent cyclic voltammetry study of silicon microwire anodes for lithium ion batteries. Electrochim. Acta 217, 283–291 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6(9), A194–A197 (2003)CrossRefGoogle Scholar
  29. 29.
    C.K. Chan et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Y. Tong, Z. Xu, C. Liu, G. Zhang, J. Wang, Z.G. Wu, Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries. J. Power Sources 247, 78–83 (2014)CrossRefGoogle Scholar
  31. 31.
    Y. Yi, G.H. Lee, J.C. Kim, H.W. Shim, D.W. Kim, Tailored silicon hollow spheres with micrococcus for Li ion battery electrodes. Chem. Eng. J. 327, 297–306 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Prakash, C. Zhang, J.D. Park, F. Razmjooei, J.S. Yu, Silicon core-mesoporous shell carbon spheres as high stability lithium-ion battery anode. J. Colloid Interface Sci. 534, 47–54 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    M.H. Parekh et al., Encapsulation and networking of silicon nanoparticles using amorphous carbon and graphite for high performance Li-ion batteries. Carbon N. Y. 148, 36–43 (2019)CrossRefGoogle Scholar
  34. 34.
    W.M. Dose, M.J. Piernas-Muñoz, V.A. Maroni, S.E. Trask, I. Bloom, C.S. Johnson, Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries. Chem. Commun. 54(29), 3586–3589 (2018)CrossRefGoogle Scholar
  35. 35.
    V.G. Khomenko, V.Z. Barsukov, J.E. Doninger, I.V. Barsukov, Lithium-ion batteries based on carbon–silicon–graphite composite anodes. J. Power Sources 165(2), 598–608 (2007)CrossRefGoogle Scholar
  36. 36.
    J.K. Lee, C. Oh, N. Kim, J.Y. Hwang, Y.K. Sun, Rational design of silicon-based composites for high-energy storage devices. J. Mater. Chem. A 4(15), 5366–5384 (2016)CrossRefGoogle Scholar
  37. 37.
    G.M. Veith et al., Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode. J. Phys. Chem. C 119(35), 20339–20349 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Zheng et al., 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 16(26), 13229–13238 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    K.W. Schroder, H. Celio, L.J. Webb, K.J. Stevenson, Examining solid electrolyte interphase formation on crystalline silicon electrodes: Influence of electrochemical preparation and ambient exposure conditions. J. Phys. Chem. C 116(37), 19737–19747 (2012)CrossRefGoogle Scholar
  40. 40.
    B. Philippe et al., Nanosilicon electrodes for lithium-ion batteries: Interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem. Mater. 24(6), 1107–1115 (2012)CrossRefGoogle Scholar
  41. 41.
    C. Cao et al., Solid electrolyte interphase on native oxide-terminated silicon anodes for Li-ion batteries. Joule 3(3), 762–781 (2019)CrossRefGoogle Scholar
  42. 42.
    M. Krajewski, B. Hamankiewicz, A. Czerwiński, Voltammetric and impedance characterization of Li4Ti5O12/n-Ag composite for lithium-ion batteries. Electrochim. Acta 219, 277–283 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Krajewski, B. Hamankiewicz, M. Michalska, M. Andrzejczuk, L. Lipinska, A. Czerwinski, Electrochemical properties of lithium-titanium oxide, modified with Ag-Cu particles, as a negative electrode for lithium-ion batteries. RSC Adv. 7(82), 52151–52164 (2017)CrossRefGoogle Scholar
  44. 44.
    W. Wang et al., Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries. Sci. Rep. 7, 44838 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    C. Li et al., Kinetics and electrochemical evolution of binary silicon-polymer systems for lithium ion batteries. RSC Adv. 7(58), 36541–36549 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Gao et al., From natural material to high-performance silicon based anode: towards cost-efficient silicon based electrodes in high-performance Li-ion batteries. Electrochim. Acta 327, 135058 (2019)CrossRefGoogle Scholar
  47. 47.
    W. Xiao, C. Miao, X. Yan, Q. Sun, P. Mei, Enhancement of electrochemical stability about silicon/carbon composite anode materials for lithium ion batteries. J. Nanomater. 2015(1), 1–6 (2015)Google Scholar
  48. 48.
    T. Jaumann et al., Lifetime vs. rate capability: understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Mater. 6(August 2016), 26–35 (2017)CrossRefGoogle Scholar
  49. 49.
    E. Radvanyi et al., Study and modeling of the solid electrolyte interphase behavior on nano-silicon anodes by electrochemical impedance spectroscopy. Electrochim. Acta 137, 751–757 (2014)CrossRefGoogle Scholar
  50. 50.
    C.L. Berhaut et al., Multiscale multiphase lithiation and delithiation mechanisms in a composite electrode unraveled by simultaneous operando small-angle and wide-angle X-ray scattering. ACS Nano (2019)Google Scholar
  51. 51.
    A. Lasia. Electrochemical impedance spectroscopy and its applications. 2014CrossRefGoogle Scholar
  52. 52.
    F. Ozanam, M. Rosso, Silicon as anode material for Li-ion batteries. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 213, 2–11 (2016)CrossRefGoogle Scholar
  53. 53.
    K. Feng et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018)CrossRefGoogle Scholar
  54. 54.
    M. Nie, D.P. Abraham, Y. Chen, A. Bose, B.L. Lucht, Silicon solid electrolyte interphase (SEI) of lithium ion battery characterized by microscopy and spectroscopy. J. Phys. Chem. C 117(26), 13403–13412 (Jul. 2013)CrossRefGoogle Scholar
  55. 55.
    S. Dalavi, P. Guduru, B.L. Lucht, Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J. Electrochem. Soc. 159(5), A642–A646 (2012)CrossRefGoogle Scholar
  56. 56.
    O.O. Taiwo et al., Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography. Electrochim. Acta 253, 85–92 (2017)CrossRefGoogle Scholar
  57. 57.
    M.J. Piernas-Muñoz, S.E. Trask, A.R. Dunlop, E. Lee, I. Bloom, Effect of temperature on silicon-based anodes for lithium-ion batteries. J. Power Sources 441 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maciej Ratynski
    • 1
  • Bartosz Hamankiewiecz
    • 1
    Email author
  • Michał Krajewski
    • 1
  • Maciej Boczar
    • 1
  • Dominika A. Buchberger
    • 1
  • Andrzej Czerwinski
    • 1
  1. 1.University of WarsawWarsawPoland

Personalised recommendations