Advertisement

Electrocatalysis

, Volume 11, Issue 1, pp 94–109 | Cite as

Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses

  • Baran SaracEmail author
  • Tolga Karazehir
  • Marlene Mühlbacher
  • A. Sezai Sarac
  • Jürgen Eckert
Original Research

Abstract

Electrocatalytic activity and sorption behavior of hydrogen in nanosized Pd–Si–(Cu) metallic glass thin film and Pd thin film electrodes sputtered on a Si/SiO2 substrate were investigated by linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrode MG4 (Pd69Si18Cu13) exhibits the best performance with the highest electrocatalytic activity in the hydrogen evolution region with less than half of the Tafel slope of Pd thin film of the same thickness and lowest overpotential at 10 mA cm−2. A new approach has been adopted by a nonlinear fitting of the entire region of the polarization curve (far- and near-equilibrium cathodic and anodic regions) to the Butler-Volmer model. α parameter is lowest for the MG2 electrode (Pd79Si16Cu5), marking that nonequilibrium conditions change the reaction kinetics. Together with MG2, MG4 shows the lowest Bode magnitude values for hydrogen sorption and evolution regions, indicating that the bonding and release of hydrogen atoms to the electrode is easier. MG4 electrode shows a dramatic decrease of the overpotential after 100 cycles, yielding an increase in hydrogen activity. Besides, MG4 exhibits the sharpest current density drop in the HER region in cyclic voltammetry compared with other MG and Pd electrodes, indicating higher electrocatalytic activity towards hydrogen evolution. The findings highlight the influence of the selected metallic glasses for the design and development of metal catalysts with higher sorption kinetics and/or electrocatalytic turnover.

Graphical Abstract

.

Keywords

Metallic glass Thin film Electrocatalysis Tafel plot Butler-Volmer model Electrochemical impedance spectroscopy 

Notes

Acknowledgments

The authors would like to thank C. Mitterer for providing the sputtering device for synthesizing the TFMGs, B. Kaynak for determining the compositions of MGTFs using X-ray photoelectron spectroscopy, and T. Schöberl for the technical support of acquiring AFM images.

Funding Information

This work was supported by the European Research Council under the Advanced Grant “INTELHYB-Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures” (Grant No. ERC-2013-ADG-340025).

Supplementary material

12678_2019_572_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1.84 MB)

References

  1. 1.
    T. Karchiyappan, Energy sources. Part A 41, 7 (2019)Google Scholar
  2. 2.
    W.C. Sheng, H.A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 157, 11 (2010)Google Scholar
  3. 3.
    R.J. Wei, M. Fang, G.F. Dong, J.C. Ho, Sci. Bull. 62, 14 (2017)Google Scholar
  4. 4.
    W.C. Sheng, M. Myint, J.G.G. Chen, Y.S. Yan, Energy Environ. Sci. 6, 5 (2013)Google Scholar
  5. 5.
    B.E. Conway, L. Bai, J. Electroanal. Chem. 198, 1 (1986)Google Scholar
  6. 6.
    R. Caputo, A. Alavi, Mol. Phys. 101, 11 (2003)Google Scholar
  7. 7.
    B.D. Adams, A.C. Chen, Mater. Today 14, 6 (2011)Google Scholar
  8. 8.
    M.W. Chen, NPG Asia Mater. 3 (2011)Google Scholar
  9. 9.
    Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z.L. Wang, W.H. Wang, Adv. Mater. 28, 46 (2016)Google Scholar
  10. 10.
    W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, H.X. Wang, J. Mater. Chem. A 5, 35 (2017)Google Scholar
  11. 11.
    G.Q. Yue, Y. Zhang, Y. Sun, B. Shen, F. Dong, Z.Y. Wang, R.J. Zhang, Y.X. Zheng, M.J. Kramer, S.Y. Wang, C.Z. Wang, K.M. Ho, L.Y. Chen, Sci. Rep. 5 (2015)Google Scholar
  12. 12.
    G. Wilde, I.R. Lu, R. Willnecker, Mater. Sci. Eng. A 375 (2004)Google Scholar
  13. 13.
    G. Fiore, L. Battezzati, J. Alloys Compd. 483, 1–2 (2009)Google Scholar
  14. 14.
    A. Takeuchi, A. Inoue, Mater. Trans. 46, 12 (2005)Google Scholar
  15. 15.
    C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151, 11, A1943-A1949 (2004)  https://doi.org/10.1149/1.1797037 Google Scholar
  16. 16.
    H. Cesiulis, N. Tsyntsaru, A. Ramanavicius, G. Ragoisha, in: Nanostructures and Thin Films for Multifunctional Applications: Technology, Properties and Devices, ed. By I. Tiginyanu, P. Topala, V. Ursakis, (Springer International Publishing, Cham, 2016), p. 3–42Google Scholar
  17. 17.
    A. Lasia, in: Modern Aspects of Electrochemistry, ed. By B.E. Conway, J.O.M. Bockris, R.E. Whites, (Springer US, 1999), p. 143–248Google Scholar
  18. 18.
    B. Sarac, T. Karazehir, M. Mühlbacher, B. Kaynak, C. Gammer, T. Schöberl, A.S. Sarac, J. Eckert, ACS Appl. Energy Mater. 1, 6 (2018)Google Scholar
  19. 19.
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, Second edn. (Wiley, Ltd Publication, West Sussex, UK, 2011), p. 421Google Scholar
  20. 20.
    R.K. Singh, R. Ramesh, R. Devivaraprasad, A. Chakraborty, M. Neergat, Electrochim. Acta 194 (2016)Google Scholar
  21. 21.
    M. Łukaszewski, K. Hubkowska, U. Koss, A. Czerwiński, J. Solid State Electrochem. 16, 7 (2012)Google Scholar
  22. 22.
    W.C. Sheng, Z.B. Zhuang, M.R. Gao, J. Zheng, J.G.G. Chen, Y.S. Yan, Nat. Commun. 6 (2015)Google Scholar
  23. 23.
    J. Zheng, S.Y. Zhou, S. Gu, B.J. Xu, Y.S. Yan, J. Electrochem. Soc. 163, 6 (2016)Google Scholar
  24. 24.
    S. Henning, J. Herranz, H.A. Gasteiger, J. Electrochem. Soc. 162, 1 (2015)Google Scholar
  25. 25.
    H.A. Gasteiger, N.M. Markovic, P.N. Ross, J. Phys. Chem. 99, 45 (1995)Google Scholar
  26. 26.
    J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H.A. Gasteiger, Energy Environ. Sci. 7, 7 (2014)Google Scholar
  27. 27.
    S.M. Alia, Y.S. Yan, J. Electrochem. Soc. 162, 8 (2015)Google Scholar
  28. 28.
    D.I. Vaireanu, A. Cojocaru, I. Maior, S. Caprarescu, A. Ionescu, V. Radu, Key Eng. Mater. 415 (2009)Google Scholar
  29. 29.
    S.N. Victoria, S. Ramanathan, Electrochim. Acta 56, 5 (2011)Google Scholar
  30. 30.
    R. Guidelli, R.G. Compton, J.M. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti, Pure Appl. Chem. 86, 2 (2014)Google Scholar
  31. 31.
    R. O’Hayre, S.W. Cha, W.G. Colella, F.B. Prinz, in: Fuel Cell Fundametals, ed. By, (Wiley, Hoboken, 2016), p. 89Google Scholar
  32. 32.
    A.J. Bard, L.R. Faulkner, in: Electrochemical Methods: Fundamentals and Applications ed. By, (Wiley, New York, 2001), p. 98–102Google Scholar
  33. 33.
    B.E. Conway, J. Chem. Educ. 39, 8 (1962)Google Scholar
  34. 34.
    R. Parsons, Trans. Faraday Soc. 54, 7 (1958)Google Scholar
  35. 35.
    R. Parsons, in: Manual of Symbols and Terminology for Physicochemical Quantities and Units, ed. By, (International Union of Pure and Applied Chemistry—Division of Physical Chemistry, 1973), p. 500–516Google Scholar
  36. 36.
    A.P. Brown, M. Krumpelt, R.O. Loutfy, N.P. Yao, Electrochim. Acta 27, 5 (1982)Google Scholar
  37. 37.
    M.A. Raj, S. Arumainathan, Vacuum 160, (2019)Google Scholar
  38. 38.
    X.T. Wang, M. Zeng, N. Nollmann, G. Wilde, Z. Tian, C.Y. Tang, AIP Adv. 7, 9 (2017)Google Scholar
  39. 39.
    H. Okamoto, J. Phase Equilib. Diffus. 28, 2 (2007)Google Scholar
  40. 40.
    S. Kajita, S. Yamaura, H. Kimura, A. Inoue, Mater. Trans. 51, 12 (2010)Google Scholar
  41. 41.
    S. Kajita, S. Kohara, Y. Onodera, T. Fukunaga, E. Matsubara, Mater. Trans. 52, 9 (2011)Google Scholar
  42. 42.
    J.L. Tang, Q.H. Zhu, Y.Y. Wang, M. Apreutesei, H. Wang, P. Steyer, M. Chamas, A. Billard, Coatings 7, 12 (2017)Google Scholar
  43. 43.
    L.F.P. Dick, M.B. Lisboa, E.B. Castro, J. Appl. Electrochem. 32, 8 (2002)Google Scholar
  44. 44.
    H. Duncan, A. Lasia, Electrochim. Acta 52, 21 (2007)Google Scholar
  45. 45.
    Y.M. Wang, D.D. Zhao, Y.Q. Zhao, C.L. Xu, H.L. Li, RSC Adv. 2, 3 (2012)Google Scholar
  46. 46.
    J. Liang, Y.C. Yang, J. Zhang, J.J. Wu, P. Dong, J.T. Yuan, G.M. Zhang, J. Lou, Nanoscale 7, 36 (2015)Google Scholar
  47. 47.
    T.G. Kelly, S.T. Hunt, D.V. Esposito, J.G. Chen, Int. J. Hydrogen Energy 38, 14 (2013)Google Scholar
  48. 48.
    K. Yin, Y.F. Cheng, B.B. Jiang, F. Liao, M.W. Shao, J. Colloid Interface Sci. 522 (2018)Google Scholar
  49. 49.
    T. Masuda, Y. Sun, H. Fukumitsu, H. Uehara, S. Takakusagi, W.J. Chun, T. Kondo, K. Asakura, K. Uosaki, J. Phys. Chem. C 120, 29 (2016)Google Scholar
  50. 50.
    S. Burkhardt, M.T. Elm, B. Lani-Wayda, P.J. Klar, Adv. Mater. Interfaces 5, 6 (2018)Google Scholar
  51. 51.
    D. Landolt, in, ed. By, (CRC Press Taylor & Francis Group, Polytechniques et universitaires romandes EPFL, 2007), p. 202–203Google Scholar
  52. 52.
    Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 19 (2011)Google Scholar
  53. 53.
    L. Liao, J. Zhu, X.J. Bian, L.N. Zhu, M.D. Scanlon, H.H. Girault, B.H. Liu, Adv. Funct. Mater. 23, 42 (2013)Google Scholar
  54. 54.
    J. Durst, C. Simon, F. Hasche, H.A. Gasteiger, J. Electrochem. Soc. 162, 1 (2015)Google Scholar
  55. 55.
    J.T. Tian, W. Wu, Z.H. Tang, Y. Wu, R. Burns, B. Tichnell, Z. Liu, S.W. Chen, Catalysts 8, 8 (2018)Google Scholar
  56. 56.
    Z.P. Lu, Y. Li, S.C. Ng, J. Non-Cryst, Solids 270, 1–3 (2000)Google Scholar
  57. 57.
    H.S. Chen, D. Turnbull, Acta Metall. 17, 8 (1969)Google Scholar
  58. 58.
    T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep. 5 (2015)Google Scholar
  59. 59.
    S. Cobo, J. Heidkamp, P.A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 11, 9 (2012)Google Scholar
  60. 60.
    A. Le Goff, V. Artero, B. Jousselme, P.D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin, M. Fontecave, Science 326, 5958 (2009)Google Scholar
  61. 61.
    D. Voiry, H. Yamaguchi, J.W. Li, R. Silva, D.C.B. Alves, T. Fujita, M.W. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 12, 9 (2013)Google Scholar
  62. 62.
    M.R. Gao, J.X. Liang, Y.R. Zheng, Y.F. Xu, J. Jiang, Q. Gao, J. Li, S.H. Yu, Nat. Commun. 6 (2015)Google Scholar
  63. 63.
    H.W. Liang, S. Bruller, R.H. Dong, J. Zhang, X.L. Feng, K. Mullen, Nat. Commun. 6 (2015)Google Scholar
  64. 64.
    J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 102, 8 (1955)Google Scholar
  65. 65.
    J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 103, 4 (1956)Google Scholar
  66. 66.
    J.P. Hoare, S. Schuldiner, J. Electrochem. Soc. 104, 9 (1957)Google Scholar
  67. 67.
    K. Ota, T. Karikomi, H. Yoshitake, N. Kamiya, Denki Kagaku 62, 2 (1994)Google Scholar
  68. 68.
    K. Qi, S.S. Yu, Q.Y. Wang, W. Zhang, J.C. Fan, W.T. Zheng, X.Q. Cui, J. Mater. Chem. A 4, 11 (2016)Google Scholar
  69. 69.
    M.D. Macia, J.M. Campina, E. Herrero, J.M. Feliu, J. Electroanal, Chem. 564, 1–2 (2004)Google Scholar
  70. 70.
    T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross, Electrochim. Acta 48, 25–26 (2003)Google Scholar
  71. 71.
    D. Wang, X. Wang, Y. Lu, C.S. Song, J. Pan, C.L. Li, M.L. Sui, W. Zhao, F.Q. Huang, J. Mater. Chem. A 5, 43 (2017)Google Scholar
  72. 72.
    N. Pentland, J.O. Bockris, E. Sheldon, J. Electrochem. Soc. 103, 9 (1956)Google Scholar
  73. 73.
    J.N. Han, J.W. Lee, M. Seo, S.I. Pyun, J. Electroanal. Chem. 506, 1 (2001)Google Scholar
  74. 74.
    B. Łosiewicz, A. Lasia, J. Electroanal. Chem. 822 (2018)Google Scholar
  75. 75.
    J.L. Tang, X.H. Zhao, Y. Zuo, P.F. Ju, Y.M. Tang, Electrochim. Acta 174 (2015)Google Scholar
  76. 76.
    A. Safavi, S.H. Kazemi, H. Kazemi, Fuel 118, (2014)Google Scholar
  77. 77.
    J.A.S.B. Cardoso, L. Amaral, O. Metin, D.S.P. Cardoso, M. Sevim, T. Sener, C.A.C. Sequeira, D.M.F. Santos, Int. J. Hydrogen Energy 42, 7 (2017)Google Scholar
  78. 78.
    S. Strbac, M. Smiljanic, Z. Rakocevic, J. Electroanal. Chem. 755 (2015)Google Scholar
  79. 79.
    H.B. Liao, C. Wei, J.X. Wang, A. Fisher, T. Sritharan, Z.X. Feng, Z.C.J. Xu, Adv. Energy Mater. 7, 21 (2017)Google Scholar
  80. 80.
    K. Magdić, K. Kvastek, V. Horvat-Radošević, Electrochim. Acta 167 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria
  2. 2.Faculty of Engineering, Department of Energy System EngineeringAdana Alparslan Türkeş Science and Technology UniversitySaricamTurkey
  3. 3.Polymer Science & Technology, Nanoscience & NanoengineeringIstanbul Technical UniversityIstanbulTurkey
  4. 4.Montanuniversität Leoben, Department Materials PhysicsLeobenAustria

Personalised recommendations