Electrochemical Energy Conversion from Direct Oxidation of Glucose on Active Electrode Materials

  • Charly Lemoine
  • Lionel Dubois
  • Teko W. Napporn
  • Karine Servat
  • Kouakou B. KokohEmail author
Original Research


Electrochemical behavior of carbon-supported platinum and gold-based catalysts towards glucose oxidation and oxygen reduction reaction were investigated separately in alkaline medium before implementing the glucose/O2 fuel cell with the best anode and cathode catalysts. These electrode materials, prepared from a surfactant-free synthesis approach, were then used in low metal loadings in a fuel cell operating in alkaline medium which can be easily removed on resin for analyzing all the reaction products, as any toxic compound has to be avoided for the interest of this specific application. Pt/rGO is the most active anode towards the glucose oxidation. For all tested catalysts, this oxidation reaction leads mainly to gluconate without chromatographically detectable reaction products resulted from C–C bond cleavage.

Graphical Abstract


Glucose fuel cell Carbon substrate Pt and Au electrodes Alkaline medium 


Funding Information

Authors received financial support from the IMABIC project funded by the French National Research Agency (ANR), the European Union (ERDF), and “Région Nouvelle-Aquitaine.”


  1. 1.
    A.T. Yahiro, S.M. Lee, D.O. Kimble, Biochim. Biophys. Acta 88, 375–383 (1964)PubMedGoogle Scholar
  2. 2.
    R.M. Allen, H.P. Bennetto, Appl. Biochem. Biotechnol. 39, 27–40 (1993)CrossRefGoogle Scholar
  3. 3.
    E. Katz, I. Willner, A.B. Kotlyar, J. Electroanal. Chem. 479, 64–68 (1999)CrossRefGoogle Scholar
  4. 4.
    D.H. Park, J.G. Zeikus, Biotechnol. Bioeng. 81, 348–355 (2003)PubMedCrossRefGoogle Scholar
  5. 5.
    A. Heller, Phys. Chem. Chem. Phys. 6, 209–216 (2004)CrossRefGoogle Scholar
  6. 6.
    C.H.A. Tsang, D.Y.C. Leung, Solid State Sci. 71, 123–129 (2017)CrossRefGoogle Scholar
  7. 7.
    P. Song, L.L. He, A.J. Wang, L.P. Mei, S.X. Zhong, J.R. Chen, J.J. Feng, J. Mater. Chem. A 3, 5321–5327 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Largeaud, K.B. Kokoh, B. Beden, C. Lamy, J. Electroanal. Chem. 397, 261–269 (1995)CrossRefGoogle Scholar
  9. 9.
    L.A. Larew, D.C. Johnson, J. Electroanal. Chem. 262, 167–182 (1989)CrossRefGoogle Scholar
  10. 10.
    Y.B. Vassilyev, O.A. Khazova, N.N. Nikolaeva, J. Electroanal. Chem. 196, 105–125 (1985)CrossRefGoogle Scholar
  11. 11.
    B. Beden, F. Largeaud, K.B. Kokoh, C. Lamy, Electrochim. Acta 41, 701–709 (1996)CrossRefGoogle Scholar
  12. 12.
    A. Habrioux, E. Sibert, K. Servat, W. Vogel, K.B. Kokoh, N. Alonso-Vante, J. Phys. Chem. B 111, 10329–10333 (2007)PubMedCrossRefGoogle Scholar
  13. 13.
    S.J. Yao, A.J. Appleby, A. Geisel, H.R. Cash, S.K. Wolfson, Nature 224(5222), 921–922 (1969)PubMedCrossRefGoogle Scholar
  14. 14.
    D. Basu, S. Sood, S. Basu, Chem. Eng. J. 228, 867–870 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Basu, S. Basu, Int. J. Hydrog. Energy 36, 14923–14929 (2011)CrossRefGoogle Scholar
  16. 16.
    B. Seger, P.V. Kamat, J. Phys. Chem. C 113, 7990–7995 (2009)CrossRefGoogle Scholar
  17. 17.
    J.J. Wang, G.P. Yin, Y.Y. Shao, S. Zhang, Z.B. Wang, Y.Z. Gao, J. Power Sources 171, 331–339 (2007)CrossRefGoogle Scholar
  18. 18.
    C. Lafforgue, M. Chatenet, L. Dubau, D.R. Dekel, ACS Catal. 8, 1278–1286 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Zadick, L. Dubau, N. Sergent, G. Berthomé, M. Chatenet, ACS Catal. 5, 4819–4824 (2015)CrossRefGoogle Scholar
  20. 20.
    Z. Li, Z. An, Y. Guo, K. Zhang, X. Chen, D. Zhang, Z. Xue, X. Zhou, X. Lu, Talanta 161, 713–720 (2016)PubMedCrossRefGoogle Scholar
  21. 21.
    J.W. Ma, A. Habrioux, Y. Luo, G. Ramos-Sanchez, L. Calvillo, G. Granozzi, P.B. Balbuena, N. Alonso-Vante, J. Mater, Chem. A 3, 11891–11904 (2015)Google Scholar
  22. 22.
    S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Coord. Chem. Rev. 312, 99–148 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Zoladek, I.A. Rutkowska, M. Blicharska, K. Miecznikowski, W. Ozimek, J. Orlowska, E. Negro, V. Di Noto, P.J. Kulesza, Electrochim. Acta 233, 113–122 (2017)CrossRefGoogle Scholar
  24. 24.
    Q. Tang, Z. Zhou, Z.F. Chen, Nanoscale 5, 4541–4583 (2013)PubMedCrossRefGoogle Scholar
  25. 25.
    S. Ghosh, H. Remita, P. Kar, S. Choudhury, S. Sardar, P. Beaunier, P.S. Roy, S.K. Bhattacharya, S.K. Pal, J. Mater. Chem. A 3, 9517–9527 (2015)CrossRefGoogle Scholar
  26. 26.
    J.W. Ma, A. Habrioux, C. Morais, A. Lewera, W. Vogel, Y. Verde-Gomez, G. Ramos-Sanchez, P.B. Balbuena, N. Alonso-Vante, ACS Catal. 3, 1940–1950 (2013)CrossRefGoogle Scholar
  27. 27.
    C. Wang, D. Astruc, Prog. Mater. Sci. 94, 306–383 (2018)CrossRefGoogle Scholar
  28. 28.
    P. Tonda-Mikiela, T.W. Napporn, C. Morais, K. Servat, A. Chen, K.B. Kokoh, J. Electrochem. Soc. 159, H828–H833 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Holade, A. Lehoux, H. Remita, K.B. Kokoh, T.W. Napporn, J. Phys. Chem. C 119, 27529–27539 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Holade, C. Morais, S. Arrii-Clacens, K. Servat, T.W. Napporn, K.B. Kokoh, Electrocatalysis 4, 167–178 (2013)CrossRefGoogle Scholar
  31. 31.
    R. Aljishi, G. Dresselhaus, Phys. Rev. B 26, 4514–4522 (1982)CrossRefGoogle Scholar
  32. 32.
    R.E. Shroder, R.J. Nemanich, J.T. Glass, Phys. Rev. B 41, 3738–3745 (1990)CrossRefGoogle Scholar
  33. 33.
    M. Veres, S. Toth, A. Koos, Diam. Relat. Mater. 17, 1692–1696 (2008)CrossRefGoogle Scholar
  34. 34.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276–1290 (2007)PubMedCrossRefGoogle Scholar
  35. 35.
    L.C. Nistor, J. Vanlanduyt, V.G. Ralchenko, T.V. Kononenko, E.D. Obraztsova, V.E. Strelnitsky, Appl. Phys. A Mater. Sci. Process. 58, 137–144 (1994)CrossRefGoogle Scholar
  36. 36.
    T. Jawhari, A. Roig, J. Casado, Carbon 33, 1561–1565 (1995)CrossRefGoogle Scholar
  37. 37.
    J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Carbon 49, 2581–2602 (2011)CrossRefGoogle Scholar
  38. 38.
    L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006)CrossRefGoogle Scholar
  39. 39.
    I. Abidat, C. Morais, S. Pronier, N. Guignard, J.D. Comparot, C. Canaff, T.W. Napporn, A. Habrioux, A.S. Mamede, J.F. Lamonier, K.B. Kokoh, Carbon 111, 849–858 (2017)CrossRefGoogle Scholar
  40. 40.
    M.O. Pedersen, S. Helveg, A. Ruban, I. Stensgaard, E. Laegsgaard, J.K. Norskov, F. Besenbacher, Surf. Sci. 426, 395–409 (1999)CrossRefGoogle Scholar
  41. 41.
    Y. Holade, K. Servat, T.W. Napporn, K.B. Kokoh, Electrochim. Acta 162, 205–214 (2015)CrossRefGoogle Scholar
  42. 42.
    A. Habrioux, D. Diabaté, J. Rousseau, T. Napporn, K. Servat, L. Guétaz, A. Trokourey, K. Kokoh, Electrocatalysis 1, 51–59 (2010)CrossRefGoogle Scholar
  43. 43.
    S. Hebie, T.W. Napporn, C. Morais, K.B. Kokoh, Chemphyschem 17(10), 1454–1462 (2016)PubMedCrossRefGoogle Scholar
  44. 44.
    Y. Holade, N. Sahin, K. Servat, T. Napporn, K. Kokoh, Catalysts 5, 310–348 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Li, K. Scott, E.H. Yu, J. Power Sources 221, 1–5 (2013)CrossRefGoogle Scholar
  46. 46.
    K. Elouarzaki, M. Holzinger, A. Le Goff, J. Thery, R.S. Marks, S. Cosnier, J. Mater. Chem A 4, 10635–10640 (2016)CrossRefGoogle Scholar
  47. 47.
    G. Siva, M.A. Aziz, G.G. Kumar, ACS Sustain. Chem. Eng. 6, 5929–5939 (2018)CrossRefGoogle Scholar
  48. 48.
    Y. Zhao, X.H. Liu, X. Wang, P.P. Zhang, J.F. Shi, Int. J. Hydrog. Energy 42, 29863–29873 (2017)CrossRefGoogle Scholar
  49. 49.
    Y. Holade, K. Servat, T.W. Napporn, C. Morais, J.M. Berjeaud, K.B. Kokoh, ChemSusChem 9, 252–263 (2016)PubMedCrossRefGoogle Scholar
  50. 50.
    R. Wojcieszak, I.M. Cuccovia, M.A. Silva, L.M. Rossi, J. Mol. Catal. A: Chem. 422, 35–42 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IC2MP UMR-CNRS 7285, Équipe SAMCat, 4 rue Michel Brunet – B27, TSA 51106, 86073Université de PoitiersPoitiers CedexFrance
  2. 2.University Grenoble AlpesCEA, CNRS, INAC-SyMMESGrenobleFrance

Personalised recommendations