Advertisement

Correlation between Precursor Properties and Performance in the Oxygen Reduction Reaction of Pt and Co “Core-shell” Carbon Nitride-Based Electrocatalysts

  • Vito Di NotoEmail author
  • Enrico Negro
  • Angeloclaudio Nale
  • Pawel J. Kulesza
  • Iwona A. Rutkowska
  • Keti Vezzù
  • Gioele Pagot
Article
  • 42 Downloads

Abstract

This report shows the synthesis of a new family of “core-shell” carbon nitride (CN)-based electrocatalysts (ECs) for the oxygen reduction reaction (ORR) in acid medium. The ECs comprise “cores” of carbon black nanoparticles (NPs) that are covered by a CN “shell” embedding the active sites. The latter include Pt as the active metal” and Co as the “co-catalyst.” The interplay between the synthesis parameters, the chemical composition, and the ORR performance of the final ECs is elucidated. In particular, the ORR performance and reaction mechanism are studied both in an: (i) “ex-situ” setup, by means of cyclic voltammetry with thin-film rotating ring-disk electrode (CV-TF-RRDE) measurements; and (ii) “in-situ” experiment, i.e., in single proton exchange membrane fuel cells (PEMFCs) tested under operating conditions. A structural hypothesis is proposed that explains both the “ex situ” and the “in situ” ORR results on the basis of: (i) the relative amounts of the reactants used in the precursor synthesis; and (ii) the main temperature of the pyrolysis process (Tf) adopted in the preparation of the ECs. It is shown that the understanding of the fundamental features of the physicochemical processes involved in the preparation of the ECs is crucial in order to improve the proposed synthesis route and to yield ORR ECs exhibiting a performance level beyond the state of the art.

Graphical Abstract

Keywords

PtCox carbon nitride-based electrocatalysts “Core-shell” morphology Oxygen reduction reaction CV-TF-RRDE method PEMFC fabrication and testing 

Notes

Acknowledgements

This project has received funding from: (a) the European Union’s Horizon 2020 research and innovation program under grant agreement Graphene Core 2 785219; (b) the program “Budget Integrato per la Ricerca Interdipartimentale - BIRD 2018” of the University of Padova (protocol BIRD187913); and (c) the project “Hierarchical electrocatalysts with a low platinum loading for low-temperature fuel cells – HELPER” funded by the University of Padova. Partial support from the National Science Center (NCN, Poland) under Opus Project 2018/29/B/ST5/02627 is also appreciated by PJK and IAR.

Supplementary material

12678_2019_569_MOESM1_ESM.docx (496 kb)
ESM 1 (DOCX 495 kb).

References

  1. 1.
    I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53(1), 102–121 (2014)CrossRefGoogle Scholar
  2. 2.
    F. Cheng, J. Chen, Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41(6), 2172–2192 (2012)PubMedCrossRefGoogle Scholar
  3. 3.
    M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)PubMedCrossRefGoogle Scholar
  4. 4.
    B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011)PubMedCrossRefGoogle Scholar
  5. 5.
    Energy infrastructure priorities for 2020 and beyond—a blueprint for an integrated European energy network, European Commission, Brussels. (2010)Google Scholar
  6. 6.
    Energy 2020—a strategy for competitive, sustainable and secure energy, COM(2010) 639, European Commission, Brussels. (2010)Google Scholar
  7. 7.
    N. Quental, D. Buttle, S. Abrar, K. Firkaviciuté, J. Jimenez Mingo, D. Sofianopoulos, A. Kontoudakis, C. Sales Agut, The Strategic Energy Technology (SET) Plan (Publications Office of the European Union, Luxembourg, 2017)Google Scholar
  8. 8.
    R. O'Hayre, S.W. Cha, W. Colella, F.B. Printz, Fuel Cell Fundamentals (Wiley, Hoboken, 2006)Google Scholar
  9. 9.
    S. Rodosik, J.P. Poirot-Crouvezier, Y. Bultel, Impact of humidification by cathode exhaust gases recirculation on a PEMFC system for automotive applications. Int. J. Hydrog. Energy 44, 12802–12817 (2018)CrossRefGoogle Scholar
  10. 10.
    V. Vielstich, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Ideal and effective efficiencies of cell reactions and comparison to Carnot cycles (Wiley, Chichester, 2003), pp. 26–30Google Scholar
  11. 11.
    G. Hinds, E. Brightman, Towards more representative test methods for corrosion resistance of PEMFC metallic bipolar plates. Int. J. Hydrog. Energy 40, 2785–2791 (2015)CrossRefGoogle Scholar
  12. 12.
    Z.F. Li, L. Xin, F. Yang, Y. Liu, H. Zhang, L. Stanciu, J. Xie, Hierarchical polybenzimidazole-grafted graphene hybrids as supports for Pt nanoparticle catalysts with excellent PEMFC performance. Nano Energy 16, 281–292 (2015)CrossRefGoogle Scholar
  13. 13.
    Z.Q. Tian, S.H. Lim, C.K. Poh, Z. Tang, Z. Xia, Z. Luo, P.K. Shen, D. Chua, Y.P. Feng, Z. Shen, J. Lin, A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv. Energy Mater. 1, 1205–1214 (2011)CrossRefGoogle Scholar
  14. 14.
    3.4 Fuel cells. (2016), https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf. Accessed 20 December 2017
  15. 15.
    M. Kiani, J. Zhang, Y. Luo, C. Jiang, J. Fan, G. Wang, J. Chen, R. Wang, Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Energy Chem. 27, 1124–1139 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Zhou, H.L. Wang, S. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45(5), 1273–1307 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima, T. Ohsaka, Emerging new generation electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 4, 11156–11178 (2016)CrossRefGoogle Scholar
  18. 18.
    N. Todoroki, R. Sasakawa, K. Kusunoki, T. Wadayama, Oxygen reduction reaction activity of nano-flake carbon-deposited Pt75Ni25(111) surfaces. Electrocatalysis 10, 232–242 (2019)CrossRefGoogle Scholar
  19. 19.
    D. Liu, L. Tao, D. Yan, Y. Zou, S. Wang, Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction. ChemElectroChem 5, 1775–1785 (2018)CrossRefGoogle Scholar
  20. 20.
    T. Sun, B. Tian, J. Lu, C. Su, Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. J. Mater. Chem. A 5, 18933–18950 (2017)CrossRefGoogle Scholar
  21. 21.
    U. Martinez, S. Komini Babu, E.F. Holby, P. Zelenay, Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen reduction reaction. Curr. Opin. Electrochem. 9, 224–232 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Huang, A. Shan, R. Wang, Low Pt Alloyed Nanostructures for Fuel Cells Catalysts. Catalysts 8 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Park, L. Zhang, S.I. Choi, L.T. Roling, N. Lu, J.A. Herron, S. Xie, J. Wang, M.J. Kim, M. Mavrikakis, Y. Xia, Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano 9(3), 2635–2647 (2015)PubMedCrossRefGoogle Scholar
  24. 24.
    N.K. Chaudhari, J. Joo, B. Kim, B. Ruqia, S.I. Choi, K. Lee, Recent advances in electrocatalysts toward the oxygen reduction reaction: The case of PtNi octahedra. Nanoscale 10(43), 20073–20088 (2018)PubMedCrossRefGoogle Scholar
  25. 25.
    J. Qian, M. Shen, S. Zhou, C.-T. Lee, M. Zhao, Z. Lyu, Z.D. Hood, M. Vara, K.D. Gilroy, K. Wang, Y. Xia, Synthesis of Pt nanocrystals with different shapes using the same protocol to optimize their catalytic activity toward oxygen reduction. Mater. Today 21, 834–844 (2018)CrossRefGoogle Scholar
  26. 26.
    V. Di Noto, E. Negro, K. Vezzù, F. Bertasi, G. Nawn, Origins, developments and perspectives of carbon nitride-based electrocatalysts for application in low-temperature FCs. Electrochem. Soc. Interf., Summer 2015, 59–64 (2015)CrossRefGoogle Scholar
  27. 27.
    V. Di Noto, E. Negro, Core-Shell Mono/Plurimetallic Carbon Nitride Based Electrocatalysts for Low-Temperature Fuel Cells (PEMFCs, DMFCs, AFCs and Electrolysers). 2009Google Scholar
  28. 28.
    V. Di Noto, A novel polymer electrolyte based on oligo(ethylene glycol) 600, K2PdCl4, and K3Fe(CN)6. J. Mater. Res. 12, 3393–3403 (1997)CrossRefGoogle Scholar
  29. 29.
    V. Di Noto, E. Negro, R. Gliubizzi, S. Gross, C. Maccato, G. Pace, Pt and Ni carbon nitride electrocatalysts for the oxygen reduction reaction. J. Electrochem. Soc. 154, B745–B756 (2007)CrossRefGoogle Scholar
  30. 30.
    E. Negro, K. Vezzù, F. Bertasi, P. Schiavuta, L. Toniolo, S. Polizzi, V. Di Noto, Interplay between nitrogen concentration, structure, morphology, and electrochemical performance of PdCoNi “Core-Shell” carbon nitride electrocatalysts for the oxygen reduction reaction. ChemElectroChem 1, 1359–1369 (2014)CrossRefGoogle Scholar
  31. 31.
    E. Negro, A. Nale, K. Vezzù, G. Pagot, S. Polizzi, R. Bertoncello, A. Ansaldo, M. Prato, F. Bonaccorso, I.A. Rutkowska, P.J. Kulesza, V. Di Noto, Hierarchical oxygen reduction reaction electrocatalysts based on FeSn0.5 species embedded in carbon nitride-graphene based supports. Electrochim. Acta 280, 149–162 (2018)CrossRefGoogle Scholar
  32. 32.
    K. Vezzù, A. Bach Delpeuch, E. Negro, S. Polizzi, G. Nawn, F. Bertasi, G. Pagot, K. Artyushkova, P. Atanassov, V. Di Noto, Fe-carbon nitride “Core-shell” electrocatalysts for the oxygen reduction reaction. Electrochim. Acta 222, 1778–1791 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Di Noto, E. Negro, S. Polizzi, F. Agresti, G.A. Giffin, Synthesis-structure-morphology interplay of bimetallic “core- shell” carbon nitride nano-electrocatalysts. ChemSusChem 5(12), 2451–2459 (2012)PubMedCrossRefGoogle Scholar
  34. 34.
    E. Negro, S. Polizzi, K. Vezzù, L. Toniolo, G. Cavinato, V. Di Noto, Interplay between morphology and electrochemical performance of “core-shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball “core”. Int. J. Hydrog. Energy 39, 2828–2841 (2014)CrossRefGoogle Scholar
  35. 35.
    V. Di Noto, E. Negro, R. Gliubizzi, S. Lavina, G. Pace, S. Gross, C. Maccato, A Pt-Fe carbon nitride nano-electrocatalyst for polymer electrolyte membrane fuel cells and direct-methanol fuel cells: synthesis, characterization and electrochemical studies. Adv. Funct. Mater. 17, 3626–3638 (2007)CrossRefGoogle Scholar
  36. 36.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005)CrossRefGoogle Scholar
  37. 37.
    V. Di Noto, E. Negro, Pt–Fe and Pt–Ni carbon nitride-based ‘Core–Shell’ ORR electrocatalysts for polymer electrolyte membrane fuel cells. Fuel Cells 10, 234–244 (2010)CrossRefGoogle Scholar
  38. 38.
    F. Basolo, R.G. Pearson, Mechanisms of Inorganic Reactions, 2nd edn. (Wiley, Chichester, 1967)Google Scholar
  39. 39.
    V. Di Noto, E. Negro, S. Polizzi, K. Vezzù, L. Toniolo, G. Cavinato, Synthesis, studies and fuel cell performance of “core-shell” electrocatalysts for oxygen reduction reaction based on a PtNix carbon nitride “shell” and a pyrolyzed polyketone nanoball "core". Int. J. Hydrog. Energy 39, 2812–2827 (2014)CrossRefGoogle Scholar
  40. 40.
    V. Di Noto, M. Vittadello, S.G. Greenbaum, S. Suarez, K. Kano, T. Furukawa, A new class of lithium hybrid gel electrolyte systems. J. Phys. Chem. B 108, 18832–18844 (2004)CrossRefGoogle Scholar
  41. 41.
    V. Di Noto, Zeolitic inorganic−organic polymer electrolyte based on oligo(ethylene glycol) 600 K2PdCl4 and K3Co(CN)6. J. Phys. Chem. B 104, 10116–10125 (2000)CrossRefGoogle Scholar
  42. 42.
    Y. Lu, Y. Jiang, H. Wu, W. Chen, Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping-cleaning. J. Phys. Chem. C 117, 2926–2938 (2013)CrossRefGoogle Scholar
  43. 43.
    V. Di Noto, E. Negro, S. Polizzi, P. Riello, P. Atanassov, Preparation, characterization and single-cell performance of a new class of Pd-carbon nitride electrocatalysts for oxygen reduction reaction in PEMFCs. Appl. Catal. B Environ. 111-112, 185–199 (2012)CrossRefGoogle Scholar
  44. 44.
    S. Guo, S. Zhang, S. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(33), 8526–8544 (2013)CrossRefGoogle Scholar
  45. 45.
    L. Dubau, T. Asset, R. Chattot, C. Bonnaud, V. Vanpeene, J. Nelayah, F. Maillard, Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction. ACS Catal. 5, 5333–5341 (2015)CrossRefGoogle Scholar
  46. 46.
    M.D. Obradović, A.V. Tripković, S.L. Gojković, Oxidation of carbon monoxide and formic acid on bulk and nanosized Pt–Co alloys. J. Solid State Electrochem. 16, 587–595 (2012)CrossRefGoogle Scholar
  47. 47.
    M.J. Molaei, A. Ataie, S. Raygan, S.J. Picken, The effect of different carbon reducing agents in synthesizing barium ferrite/magnetite nanocomposites. Mater. Chem. Phys. 219, 155–161 (2018)CrossRefGoogle Scholar
  48. 48.
    U.A. Paulus, T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001)CrossRefGoogle Scholar
  49. 49.
    M. Gattrell, B. MacDougall, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Reaction mechanisms of the O2 reduction/evolution reaction (Wiley, Chichester, 2003), pp. 443–464Google Scholar
  50. 50.
    A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources 105, 13–19 (2002)CrossRefGoogle Scholar
  51. 51.
    H. Yang, C. Coutanceau, J.-M. Léger, N. Alonso-Vante, ClaudeLamy, Methanol tolerant oxygen reduction on carbon-supported Pt–Ni alloy nanoparticles. J. Electroanal. Chem. 576, 305–313 (2005)CrossRefGoogle Scholar
  52. 52.
    J.X. Wang, F.A. Uribe, T.E. Springer, J. Zhang, R.R. Adzic, Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss. 140, 347–362 (2008)PubMedCrossRefGoogle Scholar
  53. 53.
    D.B. Sepa, M.V. Vojnovic, L.M. Vracar, A. Damjanovic, Different views regarding the kinetics and mechanisms of oxygen reduction at Pt and Pd electrodes. Electrochim. Acta 32, 129–134 (1987)CrossRefGoogle Scholar
  54. 54.
    B. Hammer, Y. Morikawa, J.K. Nørskov, CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76(12), 2141–2144 (1996)PubMedCrossRefGoogle Scholar
  55. 55.
    T.J. Schmidt, H.A. Gasteiger, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Rotating thin-film method for supported catalysts (Wiley, Chichester, 2003), pp. 316–333Google Scholar
  56. 56.
    S.S. Kocha, in Handbook of Fuel Cells—Fundamentals, Technology and Applications, ed. by V. Vielstich, A. Lamm, H. A. Gasteiger. Principles of MEA preparation (Wiley, Chichester, 2003), pp. 538–565Google Scholar
  57. 57.
    S. Kaytakoğlu, L. Akyalçın, Optimization of parametric performance of a PEMFC. Int. J. Hydrog. Energy 32, 4418–4423 (2007)CrossRefGoogle Scholar
  58. 58.
    S. Shen, X. Cheng, C. Wang, X. Yan, C. Ke, J. Yin, J. Zhang, Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 19(38), 26221–26229 (2017)PubMedCrossRefGoogle Scholar
  59. 59.
    F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry (Wiley, New York, 1999)Google Scholar
  60. 60.
    P.J. Kulesza, J.K. Zak, I.A. Rutkowska, B. Dembinska, S. Zoladek, K. Miecznikowski, E. Negro, V. Di Noto, P. Zelenay, Elucidation of role of graphene in catalytic designs for electroreduction of oxygen. Cur. Opin. Electrochem. 9, 257–264 (2018)CrossRefGoogle Scholar
  61. 61.
    J. Zak, E. Negro, I.A. Rutkowska, B. Dembinska, V. Di Noto, P.J. Kulesza, in Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, ed. by K. Wadelt. Graphene-based nanostructures in electrocatalytic oxygen reduction (Elsevier, Amsterdam, 2018), pp. 651–659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Section of Chemistry for the Technology (ChemTech), Department of Industrial EngineeringUniversity of PadovaPadova (PD)Italy
  2. 2.Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali - INSTMPadova (PD)Italy
  3. 3.Centro Studi di Economia e Tecnica dell’Energia “Giorgio Levi Cases”Padova (PD)Italy
  4. 4.Faculty of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations