Advertisement

Kelp-Derived Activated Porous Carbon for the Detection of Heavy Metal Ions via Square Wave Anodic Stripping Voltammetry

  • Jibiao Guan
  • Yini Fang
  • Ting Zhang
  • Lina Wang
  • Han Zhu
  • Mingliang Du
  • Ming ZhangEmail author
Original Research
  • 21 Downloads

Abstract

Biomass-derived porous carbon materials with environmental adaptability and superior specific surface area have become one of the most promising materials in 21st era, especially in the electrochemical application. Herein, we proposed a kelp-derived carbon material (KPC) with a unique highly disordered graphite layer structure as an outstanding sensor via facile KOH activation method. The BET adsorption-desorption isotherm of KPC shows a typical IUPAC I type, and KPC possesses a high specific surface area with 2064 m2 g−1. Morphology observation and pore size analysis indicate that its porous-rich structure comprises countless micropores and mesopores. This unique structure of KPC not only provides massive active sites but exhibits high sensitivity in the detection of heavy metal by square wave anodic stripping voltammetry (SWASV), with Pb2+ at 53.4 μA μM−1 and Cd2+ at 26.5 μA μM−1 in simultaneous detection. This study reports a new strategy for the detection of heavy metal ions using porous metal-free carbon materials.

Keywords

Kelp Porous carbon Heavy metal ions Square wave anodic stripping voltammetry (SWASV) 

Notes

Funding Information

This study was supported by the Natural Science Foundation of Zhejiang Province (Grant No. LQ16E020005).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    G. Aragay, A. Merkoçi, Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 84, 49–61 (2012).  https://doi.org/10.1016/j.electacta.2012.04.044 CrossRefGoogle Scholar
  2. 2.
    B. Çeken, M. Kandaz, A. Koca, Electrochemical metal-ion sensor based on a cobalt phthalocyanine complex captured in Nafion® on a glassy carbon electrode. J. Coord. Chem. 65(19), 3383–3394 (2012).  https://doi.org/10.1080/00958972.2012.716517 CrossRefGoogle Scholar
  3. 3.
    J. Gong, T. Zhou, D. Song, L. Zhang, Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II). Sensors Actuators B Chem. 150(2), 491–497 (2010).  https://doi.org/10.1016/j.snb.2010.09.014 CrossRefGoogle Scholar
  4. 4.
    A. Simpson, R.R. Pandey, C.C. Chusuei, K. Ghosh, R. Patel, A.K. Wanekaya, Fabrication characterization and potential applications of carbon nanoparticles in the detection of heavy metal ions in aqueous media. Carbon 127, 122–130 (2018).  https://doi.org/10.1016/j.carbon.2017.10.086 CrossRefGoogle Scholar
  5. 5.
    M.B. Gumpu, S. Sethuraman, U.M. Krishnan, J.B.B. Rayappan, A review on detection of heavy metal ions in water – an electrochemical approach. Sensors Actuators B Chem. 213, 515–533 (2015).  https://doi.org/10.1016/j.snb.2015.02.122 CrossRefGoogle Scholar
  6. 6.
    O. Karnitz, L.V.A. Gurgel, J.C.P. de Melo, V.R. Botaro, T.M.S. Melo, R.P. de Freitas Gil, L.F. Gil, Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 98(6), 1291–1297 (2007).  https://doi.org/10.1016/j.biortech.2006.05.013 CrossRefPubMedGoogle Scholar
  7. 7.
    G.-J. Lee, H.-M. Lee, C.-K. Rhee, Bismuth nano-powder electrode for trace analysis of heavy metals using anodic stripping voltammetry. Electrochem. Commun. 9(10), 2514–2518 (2007).  https://doi.org/10.1016/j.elecom.2007.07.030 CrossRefGoogle Scholar
  8. 8.
    M.R. Knecht, S. Manish, Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal. Bioanal. Chem. 394(1), 33 (2009).  https://doi.org/10.1007/s00216-008-2594-7 CrossRefPubMedGoogle Scholar
  9. 9.
    R. Raghunandhan, L.H. Chen, H.Y. Long, L.L. Leam, P.L. So, X. Ning, C.C. Chan, Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection. Sensors Actuators B Chem. 233, 31–38 (2016).  https://doi.org/10.1016/j.snb.2016.04.020 CrossRefGoogle Scholar
  10. 10.
    A.L. Suherman, E.E.L. Tanner, S. Kuss, S.V. Sokolov, J. Holter, N.P. Young, R.G. Compton, Voltammetric determination of aluminium(III) at tannic acid capped-gold nanoparticle modified electrodes. Sensors Actuators B Chem. 265, 682–690 (2018).  https://doi.org/10.1016/j.snb.2018.03.098 CrossRefGoogle Scholar
  11. 11.
    A.R. Thiruppathi, B. Sidhureddy, W. Keeler, A. Chen, Facile one-pot synthesis of fluorinated graphene oxide for electrochemical sensing of heavy metal ions. Electrochem. Commun. 76, 42–46 (2017).  https://doi.org/10.1016/j.elecom.2017.01.015 CrossRefGoogle Scholar
  12. 12.
    L. Xiao, G.G. Wildgoose, R.G. Compton, Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal. Chim. Acta 620(1-2), 44–49 (2008).  https://doi.org/10.1016/j.aca.2008.05.015 CrossRefPubMedGoogle Scholar
  13. 13.
    B.K. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 94, 443–455 (2017).  https://doi.org/10.1016/j.bios.2017.03.031 CrossRefPubMedGoogle Scholar
  14. 14.
    E.S. Forzani, Z. Haiqian, C. Wilfred, T. Nongjian, Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. Environ. Sci. Technol. 39(5), 1257–1262 (2005).  https://doi.org/10.1021/es049234z CrossRefPubMedGoogle Scholar
  15. 15.
    R.X. Xu, X.Y. Yu, C. Gao, Y.J. Jiang, D.D. Han, J.H. Liu, X.J. Huang, Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection. Anal. Chim. Acta 790, 31–38 (2013).  https://doi.org/10.1016/j.aca.2013.06.040 CrossRefPubMedGoogle Scholar
  16. 16.
    Z. Lu, W. Dai, X. Lin, B. Liu, J. Zhang, J. Ye, J. Ye, Facile one-step fabrication of a novel 3D honeycomb-like bismuth nanoparticles decorated N-doped carbon nanosheet frameworks: Ultrasensitive electrochemical sensing of heavy metal ions. Electrochim. Acta 266, 94–102 (2018).  https://doi.org/10.1016/j.electacta.2018.01.188 CrossRefGoogle Scholar
  17. 17.
    Y. Dong, L. Zhang, Constructed 3D hierarchical porous wool-ball-like NiO-loaded AlOOH electrode materials for the determination of toxic metal ions. Electrochim. Acta 271, 27–34 (2018).  https://doi.org/10.1016/j.electacta.2018.03.110 CrossRefGoogle Scholar
  18. 18.
    C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 45(3), 517–531 (2016).  https://doi.org/10.1039/c5cs00670h CrossRefPubMedGoogle Scholar
  19. 19.
    P. Zhang, Y. Gong, Z. Wei, J. Wang, Z. Zhang, H. Li, S. Dai, Y. Wang, Updating biomass into functional carbon material in ionothermal manner. ACS Appl. Mater. Interfaces 6(15), 12515–12522 (2014).  https://doi.org/10.1021/am5023682 CrossRefPubMedGoogle Scholar
  20. 20.
    N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuel 31(1), 977–985 (2016).  https://doi.org/10.1021/acs.energyfuels.6b01829 CrossRefGoogle Scholar
  21. 21.
    M. Lu, Y. Qian, C. Yang, X. Huang, H. Li, X. Xie, L. Huang, W. Huang, Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy 32, 382–388 (2017).  https://doi.org/10.1016/j.nanoen.2016.12.046 CrossRefGoogle Scholar
  22. 22.
    J. Li, K. Liu, X. Gao, B. Yao, K. Huo, Y. Cheng, X. Cheng, D. Chen, B. Wang, W. Sun, D. Ding, M. Liu, L. Huang, Oxygen- and nitrogen-enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl. Mater. Interfaces 7(44), 24622–24628 (2015).  https://doi.org/10.1021/acsami.5b06698 CrossRefPubMedGoogle Scholar
  23. 23.
    X. Liu, M. Zhang, D. Yu, T. Li, M. Wan, H. Zhu, M. Du, J. Yao, Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 215, 223–230 (2016).  https://doi.org/10.1016/j.electacta.2016.08.091 CrossRefGoogle Scholar
  24. 24.
    X. He, P. Ling, M. Yu, X. Wang, X. Zhang, M. Zheng, Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 105, 635–641 (2013).  https://doi.org/10.1016/j.electacta.2013.05.050 CrossRefGoogle Scholar
  25. 25.
    D. Jia, W. Huanlei, L. Zhi, K. Alireza, C. Kai, X. Zhanwei, Z. Beniamin, T. Xuehai, L. Elmira Memarzadeh, B.C. Olsen, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013).  https://doi.org/10.1021/nn404640c CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, H. Jiang, Q. Wang, J. Zheng, C. Meng, Kelp-derived three-dimensional hierarchical porous N, O-doped carbon for flexible solid-state symmetrical supercapacitors with excellent performance. Appl. Surf. Sci. 447, 876–885 (2018).  https://doi.org/10.1016/j.apsusc.2018.04.061 CrossRefGoogle Scholar
  27. 27.
    P. Wang, X. Zhu, Q. Wang, X. Xu, X. Zhou, J. Bao, Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J. Mater. Chem. A 5(12), 5761–5769 (2017).  https://doi.org/10.1039/c7ta00639j CrossRefGoogle Scholar
  28. 28.
    E. Raymundo-Piñero, M. Cadek, F. Béguin, Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 19(7), 1032–1039 (2009).  https://doi.org/10.1002/adfm.200801057 CrossRefGoogle Scholar
  29. 29.
    J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22(45), 23710 (2012).  https://doi.org/10.1039/c2jm34066f CrossRefGoogle Scholar
  30. 30.
    C. Long, X. Chen, L. Jiang, L. Zhi, Z. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12, 141–151 (2015).  https://doi.org/10.1016/j.nanoen.2014.12.014 CrossRefGoogle Scholar
  31. 31.
    X.-J. Han, S.-F. Zhou, H.-L. Fan, Q.-X. Zhang, Y.-Q. Liu, Mesoporous MnFe2O4 nanocrystal clusters for electrochemistry detection of lead by stripping voltammetry. J. Electrochem. Soc. 755, 203–209 (2015).  https://doi.org/10.1016/j.jelechem.2015.07.054 CrossRefGoogle Scholar
  32. 32.
    L. Zhu, C. Tian, R. Yang, J. Zhai, Anodic stripping voltammetric determination of lead in tap water at an ordered mesoporous carbon/nafion composite film Electrode. Electroanalysis 20(5), 527–533 (2008).  https://doi.org/10.1002/elan.200704088 CrossRefGoogle Scholar
  33. 33.
    W.-J. Li, X.-Z. Yao, Z. Guo, J.-H. Liu, X.-J. Huang, Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J. Electrochem. Soc. 749, 75–82 (2015).  https://doi.org/10.1016/j.jelechem.2015.04.038 CrossRefGoogle Scholar
  34. 34.
    C.M. Quiroa-Montalván, L.E. Gómez-Pineda, L. Álvarez-Contreras, R. Valdez, N. Arjona, M.T. Oropeza-Guzmán, Ordered mesoporous carbon decorated with magnetite for the detection of heavy metals by square wave anodic stripping voltammetry. J. Electrochem. Soc. 164(6), B304–B313 (2017).  https://doi.org/10.1149/2.0231707jes CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations