Advertisement

Facile Synthesis of a Carbon-Encapsulated Pd Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells

  • Jeongsoo Hwang
  • Youngkwang Kim
  • Mohanraju Karuppnan
  • Taeho LimEmail author
  • Oh Joong KwonEmail author
Original Research
  • 41 Downloads

Abstract

The key to popularizing proton exchange fuel cells is developing highly active, stable, and cost-effective catalysts for oxygen reduction reaction. Pd is considered as an alternative to Pt due to its high tolerance to poisoning and electronic similarity with Pt, which is a robust but expensive catalyst. However, its vulnerability to dissolving in acidic media prevents the use of Pd as an oxygen reduction reaction catalyst. In this study, a facile synthesis method was developed to prepare a carbon-encapsulated Pd catalyst using aniline. The oxidative polymerization of aniline with a Pd precursor formed Pd nanoparticles embedded in a rod-shaped polyaniline matrix. The polyaniline matrix was carbonized using heat treatment, which then acted as a source of N-containing carbon layer that protects Pd nanoparticles from dissolution and improves oxygen reduction reaction activity. The stability and oxygen reduction reaction activity of the synthesized Pd catalyst were strongly dependent on the heat treatment temperature. The Pd catalysts heat-treated at 300 °C and 500 °C exhibited improved activity and stability as compared to commercial Pd/C. We envision that this method is suitable for mass production of active and stable oxygen reduction reaction catalysts in proton exchange fuel cells.

Graphical abstract

Schematic diagram showing a synthesis process and the HR-TEM image of Pd nanoparticle encapsulated by carbon shell

Keywords

Pd Metal Catalyst PEMFC Polyaniline Application 

Notes

Acknowledgements

This work was supported by Incheon National University Research Grant in 2016.

References

  1. 1.
    J. Larminie, A. Dicks, Fuel Cell System Explained, 2nd edn. (Wiley, England, 2000)Google Scholar
  2. 2.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 56, 9–35 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).CrossRefGoogle Scholar
  4. 4.
    H. Tsuchiya, O. Kobayashi, Mass production of PEM fuel cell by learning curve. Int. J. Hydrog. Energy 29, 985–990 (2004).Google Scholar
  5. 5.
    D. Banham, S. Ye, K. Pei, J. Ozaki, T. Kishimoto, Y. Imashiro, A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 285, 334–348 (2015).CrossRefGoogle Scholar
  6. 6.
    R. Othman, A.L. Dicks, Z. Zhu, Non precious metal catalysts for the PEM fuel cell cathode. Int. J. Hydrog. Energy 37, 357–372 (2012).CrossRefGoogle Scholar
  7. 7.
    H. Lee, M.J. Kim, T. Lim, Y.-E. Sung, H.-J. Kim, H.-N. Lee, O.J. Kwon, Y.-H. Cho, A facile synthetic strategy for iron, aniline-based non-precious metal catalysts for polymer electrolyte membrane fuel cells. Sci. Rep. 7, 5396 (2017).Google Scholar
  8. 8.
    E. Antolini, Palladium in fuel cell catalysis. Energy Environ. Sci. 2, 915–931 (2009).CrossRefGoogle Scholar
  9. 9.
    D.C. Papageorgopoulos, M. Keijzer, J.B.J. Veldhuis, F.A. de Bruijn, CO tolerance of Pd-rich platinum palladium carbon-supported electrocatalysts. J. Electrochem. Soc. 149, A1400–A1404 (2002).CrossRefGoogle Scholar
  10. 10.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction reaction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).CrossRefGoogle Scholar
  11. 11.
    E. Pizzutilo, S. Geiger, S.J. Freakley, A. Mingers, S. Cherevko, G.J. Hutchings, K.J.J. Mayrhofer, Palladium electrodissolution from model surfaces and nanoparticles. Electrochim. Acta 229, 467–477 (2017).CrossRefGoogle Scholar
  12. 12.
    J.J. Salvador-Pascual, S. Citalán-Cigarroa, O. Solorza-Feria, Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media. J. Power Sources 172, 229–234 (2007).CrossRefGoogle Scholar
  13. 13.
    J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J. Power Sources 184, 104–119 (2008).CrossRefGoogle Scholar
  14. 14.
    E. Antolini, S.C. Zignani, S.F. Santos, E.R. Gonzalez, Palladium-based electrodes: a way to reduce platinum content in polymer electrolyte membrane fuel cells. Electrochim. Acta 56, 2299–2305 (2011).CrossRefGoogle Scholar
  15. 15.
    E. Antolini, Alloy vs. intermetallic compounds: effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. Appl. Catal. B-Environ. 217, 201–213 (2017).CrossRefGoogle Scholar
  16. 16.
    J.N. Tiwari, W.G. Lee, S. Sultan, M. Yousuf, A.M. Harzandi, V. Vij, K.S. Kim, High-affinity-assisted nanoscale alloys as remarkable bifunctional catalyst for alcohol oxidation and oxygen reduction reactions. ACS Nano 11, 7729–7735 (2017).CrossRefGoogle Scholar
  17. 17.
    L. Xiao, L. Zhuang, Y. Liu, J. Lu, H.D. Abruña, Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc. 131, 602–608 (2009).CrossRefGoogle Scholar
  18. 18.
    Z. Yang, Y. Ling, Y. Zhang, G. Xu, High performance palladium supported on nanoporous carbon under anhydrous condition. Sci. Rep. 6, 36521 (2016).Google Scholar
  19. 19.
    T. Mittermeier, A. Weiß, H.A. Gasteiger, F. Hasché, Monometallic palladium for oxygen reduction in PEM fuel cells: particle-size effect, reaction mechanism, and voltage cycling stability. J. Electrochem. Soc. 164, F1081–F1089 (2017).CrossRefGoogle Scholar
  20. 20.
    M. Wang, X. Qin, K. Jiang, Y. Dong, M. Shao, W.-B. Cai, Electrocatalytic activities of oxygen reduction reaction on Pd/C and Pd-B/C catalysts. J. Phys. Chem. C 121, 3416–3423 (2017).CrossRefGoogle Scholar
  21. 21.
    S. Takenaka, H. Miyamoto, Y. Utsunomiya, H. Matsune, M. Kishida, Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J. Phys. Chem. C 118, 774–783 (2014).CrossRefGoogle Scholar
  22. 22.
    Y. Nie, S. Chen, W. Ding, X. Xie, Y. Zhang, Z. Wei, Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction. Chem. Commun. 50, 15431–15434 (2014).CrossRefGoogle Scholar
  23. 23.
    X. Tong, J. Zhang, G. Zhang, Q. Wei, R. Chenitz, J.P. Claverie, S. Sun, Ultrathin carbon-coated Pt/carbon nanotubes: a highly durable electrocatalyst for oxygen reduction. Chem. Mater. 29, 9579–9587 (2017).CrossRefGoogle Scholar
  24. 24.
    J. Tang, J. Liu, N.L. Torad, T. Kimura, Y. Yamauchi, Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9, 305–323 (2014).CrossRefGoogle Scholar
  25. 25.
    L. Guo, W.-J. Jiang, Y. Zhang, J.-S. Hu, Z.-D. Wei, L.-J. Wan, Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes towards highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 5, 2903–2909 (2015).CrossRefGoogle Scholar
  26. 26.
    H. Lee, Y.-E. Sung, I. Choi, T. Lim, O.J. Kwon, Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell. J. Power Sources 362, 228–235 (2017).CrossRefGoogle Scholar
  27. 27.
    Q. Zhang, X. Yu, Y. Ling, W. Cai, Z. Yang, Ultrathin nitrogen doped carbon layer stabilized Pt electrocatalyst supported on N-doped carbon nanotubes. Int. J. Hydrog. Energy 42, 10354–10362 (2017).CrossRefGoogle Scholar
  28. 28.
    A. Drelinkiewicz, M. Hasik, M. Kloc, Pd-PANI: preparation and catalytic properties. Synth. Met. 102, 1307–1308 (1999).CrossRefGoogle Scholar
  29. 29.
    K. Mallick, M.J. Witcomb, M.S. Scurrell, Formation of palladium nanoparticles in poly (o-methoxyaniline) macromolecule fibers: An in-situ chemical synthesis method. Eur. Phys. J. E 19, 149–154 (2006).CrossRefGoogle Scholar
  30. 30.
    K. Mallick, M. Witcomb, M. Scurrell, Palladium-polyaniline and palladium-polyaniline derivative composite materials. Platin. Met. Rev. 51, 3–15 (2007)CrossRefGoogle Scholar
  31. 31.
    S. Dutt, R. Kumar, P.F. Siril, Green synthesis of a palladium-polyaniline nanocomposite for green Suzuki-Miyaura coupling reactions. RSC Adv. 5, 33786–33791 (2015).CrossRefGoogle Scholar
  32. 32.
    H. Liu, X.B. Hu, J.Y. Wang, R.I. Boughton, Structure, conductivity, and thermopower of crystalline polyaniline synthesized by the ultrasonic irradiation polymerization method. Macromolecules 35, 9414–9419 (2002).CrossRefGoogle Scholar
  33. 33.
    G.M. Veith, A.R. Lupini, L. Baggetto, J.F. Browning, J.K. Keum, A. Villa, L. Prati, A.B. Papandrew, G.A. Goenaga, D.R. Mullins, S.E. Bullock, N.J. Dudney, Evidence for the formation of nitrogen-rich platinum and palladium nitride nanoparticles. Chem. Mater. 25, 4936–4945 (2013).CrossRefGoogle Scholar
  34. 34.
    O.-H. Kim, Y.-H. Cho, D.Y. Chung, M.J. Kim, J.M. Yoo, J.E. Park, H. Choe, Y.-E. Sung, Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells. Sci. Rep. 5, 8376 (2015).Google Scholar
  35. 35.
    A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 31, 1605–1609 (2015).CrossRefGoogle Scholar
  36. 36.
    A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Sci. Adv. 3, e1600542 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Energy and Chemical Engineering and Innovation Center for Chemical EngineeringIncheon National UniversityIncheonRepublic of Korea
  2. 2.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Chemical EngineeringSoongsil UniversitySeoulRepublic of Korea

Personalised recommendations