Advertisement

Preventing the Deactivation of Gold Cathodes During Electrocatalytic CO2 Reduction While Avoiding Gold Dissolution

Abstract

The electrochemical reduction of CO2 on gold cathodes was investigated, and the major products were found to be CO, H2 and formate, which is consistent with existing literature. The Faradaic efficiency for CO production decreased from around 60 to 10% over the course of 4 h when the electrolysis was performed at – 5 mA cm–2 in 0.2 M KHCO3 saturated with CO2. This deactivation was accompanied by an increase in the selectivity of the cathode towards H2 and formate production, which is normally attributed to the deposition of metals from trace impurities in the electrolyte or surface-bound species formed during the reaction. In this case, the deactivation was found to be due to the deposition of Cu, Zn and possibly Fe from the electrolyte, with the presence of Fe strongly enhancing H2 production, the Cu deposition increasing the formate production rate and Zn enhancing both H2 and formate production. While the accumulation of these poisons can be prevented with periodic anodic treatments (using methods previously described in the literature), these treatments lead to significant gold dissolution, with up to 450 ppb of gold found in the electrolyte after 4 h of electrolysis, and thus is unsuitable for use in long-term CO2 reduction systems. This dissolution is expected to alter the surface structure and thus selectivity of the cathode. Therefore, alternative electrochemical cleaning protocols (periodic cyclic voltammetry, open-circuit and low anodic current treatments) were investigated as methods to remove these poisons without significant gold corrosion occurring. The best approach to prevent the deactivation of gold cathodes during CO2 reduction is to cycle the potential between − 0.5 and 0.5 V vs Ag|AgCl every 15 min during long-term electrolysis. It is also shown that simply interrupting the CO2 reduction process every 15 min with 4 min at open circuit can also partially prevent the deactivation of the CO2 reduction reaction as will short anodic current pulses.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    E.E. Benson, C.P. Kubiak, A.J. Sathurn, J.M. Smieja, Chem. Soc. Rev. 38(1), 89–99 (2009)

  2. 2.

    M.R. Dubois, D.L. Dubois, Acc. Chem. Res. 42, 1974–1982 (2009)

  3. 3.

    B. Kumar, M. Liorente, J. Froehlich, T. Dang, A.J. Sathurn, C.P. Kubiak, Annu. Rev. Phys. Chem. 63, 541–569 (2012)

  4. 4.

    E.V. Kondratenko, G. Mul, J. Baltrusaitis, G.O. Larrazabal, J. Perez-Ramirez, Energy Environ. Sci. 6, 3112–3135 (2013)

  5. 5.

    H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda, K. Ito, Chem. Soc. Jpn. 63, 2459–2462 (1990)

  6. 6.

    M. Azuma, K. Hashimoto, M. Hiramoto, J. Electrochem. Soc. 137, 1772–1778 (1990)

  7. 7.

    J. Augustynski, P. Kedzierzawski, B. Jermann, Stud. Surf. Sci. Catal. 114, 107–116 (1998)

  8. 8.

    Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc. Faraday Trans. 85, 2309–2326 (1989)

  9. 9.

    Y. Hori, K. Kikuchi, S. Suzuki, Chem. Soc. Jpn., 1695–1698 (1985)

  10. 10.

    M. Jitaru, D.A. Lowy, M. Toma, B.C. Toma, L. Oniciu, J. Appl. Electrochem. 27, 875–889 (1997)

  11. 11.

    R. Kostecki, J. Augustynski, Ber. Bunsenges. Phys. Chem. 98, 1510–1515 (1994)

  12. 12.

    H. Yano, F. Shirai, M. Nakayama, K. Ogura, J. Electroanal. Chem. 533, 113–118 (2002)

  13. 13.

    B. Jermann, J. Augustynski, Electrochim. Acta 39, 1891–1896 (1994)

  14. 14.

    Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai, K. Oguma, Electrochim. Acta 50, 5354–5360 (2005)

  15. 15.

    P. Kedzierzawski, J. Augustynski, J. Electrochem. Soc. 141, L58–L60 (1994)

  16. 16.

    Y. Hori, A. Murata, K. Kikuchi, S. Suzuki, J. Chem. Soc. Chem. Commun. 10, 728–729 (1987)

  17. 17.

    Y. Hori, in Modern Aspects of Electrochemistry, ed. by C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco. Electrochemical CO2 Reduction on Metal Electrodes, vol 42 (Springer, New York, 2008), pp. 89–189

  18. 18.

    W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S.H. Sun, J. Am. Chem. Soc. 135, 16833–16836 (2013)

  19. 19.

    M. Dunwell, L. Qi, J.M. Heyes, J. Rosen, J.G. Chen, Y. Yan, F. Jiao, B. Xu, J. Am. Chem. Soc. 139, 3774–3783 (2017)

  20. 20.

    S. Ikeda, T. Takagi, K. Ito, Bull. Chem. Soc. Jpn. 60, 2517–2522 (1987)

  21. 21.

    Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 39, 1833–1839 (1994)

  22. 22.

    A. Wuttig, Y. Surendranath, ACS Catal. 5, 4479–4484 (2015)

  23. 23.

    R. Shiratsuchi, Y. Aikoh, G. Nogami, J. Electrochem. Soc. 140, 3479–3482 (1993)

  24. 24.

    P. Friebe, P. Bogdanoff, N. Alonso-Vante, H. Tribuysch, J. Catal. 168, 374–385 (1997)

  25. 25.

    J. Lee, Y. Tak, Electrochim. Acta 46, 3015–3022 (2001)

  26. 26.

    Y. Terunuma, A. Saitoh, Y. Momose, J. Electroanal. Chem. 434, 69–75 (1997)

  27. 27.

    Shiratsuchi R. , Ishimaru S. , Nogami G. , Denki Kagaku, 668-70 (1997).

  28. 28.

    B.P. Sullivan, K. Krist, H.E. Guard, Electrochemical and electrocatalytic reactions of carbon dioxide (Elsevier Science Publishers B.V, Amsterdam, 1993)

  29. 29.

    R. Kas, R. Kortlever, H. Yilmaz, M. Koper, G. M, Chem. Commun. 2, 354–358 (2015)

  30. 30.

    D.W. DeWulf, T. Jin, A.J. Bard, J. Electrochem. Soc. 136, 1686–1691 (1989)

  31. 31.

    S. Wasmus, E. Cattaneo, W. Vielstich, Electrochim. Acta 35, 771–775 (1990)

  32. 32.

    G. Kyriacou, A. Anagnostopoulos, J. Electroanal. Chem. 322, 233–246 (1992)

  33. 33.

    J.F. Xie, Y.X. Huang, W.W. Li, X.N. Song, L. Xiong, H.Q. Yu, Electrochim. Acta 139, 137–144 (2014)

  34. 34.

    C.F.C. Lim, D.A. Harrington, A.T. Marshall, Electrochim. Acta 222, 133–140 (2016)

  35. 35.

    L. Qi, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, Nat. Commun. 5 (2014)

  36. 36.

    E.A. Batista, M.L. Temperini, J. Electroanal. Chem. 629, 158–163 (2009)

  37. 37.

    J.C. Hoogvliet, M. Dijksma, B. Kamp, W.P. van Bennekom, Anal. Chem. 72(9), 2016–2021 (2000)

  38. 38.

    E.R. Cave, J.H. Montoya, K.P. Kuhl, D.N. Abram, T. Hatsukade, C. Shi, C. Hahn, J.K. Norskov, T. Jaramillo, Phys. Chem. Chem. Phys. 19(24), 15856–15863 (2017)

  39. 39.

    S. Cherevko, A.A. Topalov, I. Katsounaros, K.J. Mayrhofer, Electrochem. Commun. 28, 44–46 (2013)

  40. 40.

    D.A.J. Rand, R. Woods, J. Electroanal. Chem. Interfacial Electrochem. 35, 209–218 (1972)

  41. 41.

    S. Cherevko, A.A. Topalov, A.R. Zeradjanin, I. Katsounaros, K.J. Mayrhofer, J. R. Soc. Chem. 3, 16516–16527 (2013)

  42. 42.

    S. Cherevko, A.R. Zeradjanin, G.P. Keeley, K.J. Mayrhofer, J. Electrochem. Soc. 161, H822–H830 (2014)

  43. 43.

    A.C. Cruickshank, A.J. Downard, Electrochim. Acta 54, 5566–5570 (2009)

  44. 44.

    J.T. Steven, V.B. Golovko, B. Johannessen, A.T. Marshall, Electrochim. Acta 187, 593–604 (2016)

  45. 45.

    Y. Wang, E. Laborda, A. Crossley, R.G. Compton, Phys. Chem. Chem. Phys. Commun. 15 (2013)

  46. 46.

    K. Kodama, A. Beniya, N. Isomura, Y. Watanabe, Electrocatalysis, 1–9 (2018)

  47. 47.

    C.F.C. Lim, D.A. Harrington, A.T. Marshall, Electrochim. Acta 238, 56–63 (2017)

  48. 48.

    H. Noda, S. Ikeda, A. Yamamoto, H. Einaga, K. Ito, Bull. Chem. Soc. Jpn. 68, 1889–1895 (1995)

  49. 49.

    J.J. Wu, S. Sun, X.D. Zhou, Nano Energy 27, 225–229 (2016)

  50. 50.

    M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, T. Sakata, J. Electrochem. Soc. 137, 1772–1778 (1990)

  51. 51.

    P. Rodriguez, M. Koper, Phys. Chem. Chem. Phys. 16(27), 13583–13594 (2014)

  52. 52.

    P. Rodriguez, N.G. Araez, M. Koper, Phys. Chem. Chem. Phys. 12(32), 9373–9380 (2010)

  53. 53.

    P. Rodriguez, A. Koverga, M. Koper, Angew. Chem. Int. Ed. 49(7), 1241–1243 (2010)

  54. 54.

    G.J. Edens, A. Hamelin, M.J. Weaver, J. Phys. Chem. 100, 2322–2329 (1996)

  55. 55.

    N. Gupta, M. Gattrell, B. MacDougall, J. Appl. Electrochem. 36, 161–172 (2006)

  56. 56.

    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, 1966)

  57. 57.

    S. González, M. Pérez, M. Barrera, A.R. González Elipe, R.M. Souto, J. Phys. Chem. B 102, 5483–5489 (1998)

  58. 58.

    N. Batina, D.M. Kolb, R.J. Nichols, Langmuir 8, 2572–2576 (1992)

  59. 59.

    J.E.T. Andersen, G. Bech-Nielsen, P. Møller, J.C. Reeve, J. Appl. Electrochem. 26, 161–170 (1996)

  60. 60.

    Y. Chen, Y. Huang, T. Cheng, W.A. Goddard, J. Am. Chem. Soc. (2019)

  61. 61.

    S. Back, M.S. Yeom, Y. Jung, ACS Catal. 5, 5089–5096 (2015)

  62. 62.

    W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 136, 16132–16135 (2014)

  63. 63.

    T. Cheng, Y. Huang, H. Xiao, W.A. Goddard, J. Phys. Chem. Lett. 8, 3317–3320 (2017)

  64. 64.

    H.C. Patel, A.N. Tabish, F. Comelli, P.V. Aravind, Appl. Energy 154, 912–920 (2015)

  65. 65.

    J.W. Vickers, D. Alfonso, D.R. Kauffman, Energy Technol. 5, 775–795 (2017)

Download references

Acknowledgements

This work was performed in part at the Australian National Fabrication Facility (ANFF), a company established under the National Collaborative Research Infrastructure Strategy, through the La Trobe University Centre for Materials and Surface Science. We also thank Colin Doyle (University of Auckland) for assistance with XPS analysis samples.

Funding Information

We received funding from MacDiarmid Institute for Advances Materials and Nanotechnology.

Author information

Correspondence to Aaron T. Marshall.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahangari, H.T., Marshall, A.T. Preventing the Deactivation of Gold Cathodes During Electrocatalytic CO2 Reduction While Avoiding Gold Dissolution. Electrocatalysis 11, 25–34 (2020) doi:10.1007/s12678-019-00564-z

Download citation

Keywords

  • CO2 electrochemical reduction
  • CO production
  • Deactivation
  • Gold dissolution