Advertisement

Electrocatalysis

, Volume 11, Issue 1, pp 14–24 | Cite as

Iodide as Terminating Agent for Platinum Electrodeposition

  • Sebastian ProchEmail author
  • Shuhei Yoshino
  • Juntaro Seki
  • Naoko Takahashi
  • Kousuke Kitazumi
  • Kensaku KodamaEmail author
  • Yu MorimotoEmail author
Original Research
  • 35 Downloads

Abstract

“Approximate” Pt layers hold great promise to be highly active and durable oxygen reduction reaction (ORR) catalysts. Electrodeposition of such layers on relevant catalyst supports, for example TiOx, requires the application of a “Pt-on-Pt” deposition limiter to keep layers thin and leave no atom behind for catalysis. Classic Pt-on-Pt deposition limiting agents like CO and over-potential deposited hydrogen (Hopd) work reliably on gold but fail on TiOx substrates. Iodide, in contrast, is a new “Pt-on-Pt” deposition limiting agent that shows substantial Pt layer thickness reduction during electrodeposition on gold as well as TiOx substrates.

Graphical Abstract

Limitations are not always a bad thing: The addition of NaI during Pt electrodeposition from Ar-saturated 0.1 mM K2PtCl4 + 0.1 M HClO4 solution limits the Pt deposition amount and leads to a substantial reduction in Pt layer thickness and a concurrent increase in ORR mass activity.

Keywords

Proton-exchange membrane fuel cells (PEMFCs) Oxygen reduction reaction (ORR) Limited electrodeposition Approximate layer Over-potential deposited hydrogen (HopdIodide 

Notes

References

  1. 1.
    P.C.K. Vesborg, T.F. Jaramillo, Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012)Google Scholar
  2. 2.
    H.A. Gasteiger, J. Garche, Fuel Cells (Wiley-VCH Verlag GmbH & Co. KGaA, Handbook of Heterogeneous Catalysis, 2008)Google Scholar
  3. 3.
    Statista. Number of cars sold worldwide from 1990 to 2018 (in million units). 2018.Google Scholar
  4. 4.
    H.A. Gasteiger, N.M. Marković, Just a dream—or future reality? Science. 324, 48 (2009)PubMedGoogle Scholar
  5. 5.
    M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 486(7401), 43–51 (2012)PubMedGoogle Scholar
  6. 6.
    M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)PubMedGoogle Scholar
  7. 7.
    Harkness I, Sharman J. Fibrous Pt Catalysts Created with ALD-Deposited Pt on Oxide, Carbide or Nitride Surface Tie Layers Where the Pt Deposits Extend over the Surface in Large Contiguous Islands or as Continuous Film. Novel Catalyst Structures Employing Pt at Ultra Low and Zero Loadings for Automotive MEAs (CATAPULT); 2014.Google Scholar
  8. 8.
    Harkness I, Sharman J, Bosund M, Geppert T, El-Sayed H, Gasteiger HA, et al. Demonstration of Pt-Catalysed Non-Carbon Support with Higher Mass Activity than Conventional Pt/C Nanoparticles and in Excess of 0.15 A/Mg Pt. Novel Catalyst Structures Employing Pt at Ultra Low and Zero Loadings for Automotive MEAs (CATAPULT); 2014.Google Scholar
  9. 9.
    M.K. Debe, Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J. Electrochem. Soc. 160, F522–FF34 (2013)Google Scholar
  10. 10.
    M.K. Debe, Nanostructured thin film electrocatalysts for PEM fuel cells - a tutorial on the fundamental characteristics and practical properties of NSTF catalysts. ECS Trans. 45, 47–68 (2012)Google Scholar
  11. 11.
    M.K. Debe, R.T. Atanasoski, A.J. Steinbach, Nanostructured thin film electrocatalysts - current status and future potential. ECS Trans. 41, 937–954 (2011)Google Scholar
  12. 12.
    M. Watanabe, S. Saegusa, P. Stonehart, High platinum electrocatalyst utilizations for direct methanol oxidation. J. Electroanal. Chem. Interfacial Electrochem. 271, 213–220 (1989)Google Scholar
  13. 13.
    M. Watanabe, H. Sei, P. Stonehart, The influence of platinum crystallite size on the electroreduction of oxygen. J. Electroanal. Chem. Interfacial Electrochem. 261, 375–387 (1989)Google Scholar
  14. 14.
    M. Nesselberger, M. Roefzaad, R. Fayçal Hamou, P. Ulrich Biedermann, F.F. Schweinberger, S. Kunz, et al., The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12(10), 919–924 (2013)PubMedGoogle Scholar
  15. 15.
    J. Speder, L. Altmann, M. Baumer, J.J.K. Kirkensgaard, K. Mortensen, M. Arenz, The particle proximity effect: from model to high surface area fuel cell catalysts. RSC Adv. 4, 14971–14978 (2014)Google Scholar
  16. 16.
    J. Speder, I. Spanos, A. Zana, J.J.K. Kirkensgaard, K. Mortensen, L. Altmann, et al., From single crystal model catalysts to systematic studies of supported nanoparticles. Surf. Sci. 631, 278–284 (2015)Google Scholar
  17. 17.
    S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, The “Particle Proximity Effect” in three dimensions: a case study on Vulcan XC 72R. Electrocatalysis. 7, 249–261 (2016)Google Scholar
  18. 18.
    J. Huang, J. Zhang, M.H. Eikerling, Particle proximity effect in nanoparticle electrocatalysis: surface charging and electrostatic interactions. J. Phys. Chem. C 121, 4806–4815 (2017)Google Scholar
  19. 19.
    S. Proch, S. Yoshino, N. Takahashi, J. Seki, S. Kosaka, K. Kodama, et al., The native oxide on titanium metal as a conductive model substrate for oxygen reduction reaction studies. Electrocatalysis. 9, 608–622 (2018)Google Scholar
  20. 20.
    S. Proch, S. Yoshino, Y. Kamitaka, N. Takahashi, J. Seki, K. Kodama, Hydrogen treatment as potential protection of electrodeposited Pt, Au, and Pt/Au oxygen reduction catalysts on TiOx. Electrocatalysis. 10, 1–16 (2019)Google Scholar
  21. 21.
    Proch S, Yoshino S, Kitazumi K, Seki J, Kodama K, Morimoto Y. Over-potential deposited hydrogen (Hopd) as terminating agent for platinum and gold electro(co)deposition. Electrocatalysis. 2019.Google Scholar
  22. 22.
    R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107(10), 3904–3951 (2007)PubMedGoogle Scholar
  23. 23.
    Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Instability of supported platinum nanoparticles in low-temperature fuel cells. Top. Catal. 46, 285–305 (2007)Google Scholar
  24. 24.
    N.R. Elezovic, V.R. Radmilovic, N.V. Krstajic, Platinum nanocatalysts on metal oxide based supports for low temperature fuel cell applications. RSC Adv. 6, 6788–6801 (2016)Google Scholar
  25. 25.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, et al., A reverse-current decay mechanism for fuel cells. Electrochem. Solid-State Lett. 8, A273–A2A6 (2005)Google Scholar
  26. 26.
    F.N. Buechi, T.J. Schmidt, Polymer electrolyte fuel cell durability (Springer Science + Business Media, LLC., New York, 2009)Google Scholar
  27. 27.
    A. Michaelis, in Advances in Electrochemical Science and Engineering, ed. by R. C. Alkire, D. M. Kolb, J. Lipkowski, P. N. Ross. Valve metal, Si and ceramic oxides as dielectric films for passive and active electronic devices (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), pp. 1–106Google Scholar
  28. 28.
    C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, B. Yi, Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. ChemSusChem. 6(4), 659–666 (2013)PubMedGoogle Scholar
  29. 29.
    S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, CO-terminated platinum electrodeposition on Nb-doped bulk rutile TiO2. Electrocatalysis. 7, 362–375 (2016)Google Scholar
  30. 30.
    M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, Ota K-i. Effect of tin oxides on oxide formation and reduction of platinum particles. Electrochem. Solid-State Lett. 10, F1–F4 (2007)Google Scholar
  31. 31.
    B.E. Hayden, Particle size and support effects in electrocatalysis. Acc. Chem. Res. 46(8), 1858–1866 (2013)PubMedGoogle Scholar
  32. 32.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of Pt particle size on the surface oxidation of titania supported platinum. Phys. Chem. Chem. Phys. 11(10), 1564–1570 (2009)PubMedGoogle Scholar
  33. 33.
    B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, The influence of support and particle size on the platinum catalysed oxygen reduction reaction. Phys. Chem. Chem. Phys. 11(40), 9141–9148 (2009)PubMedGoogle Scholar
  34. 34.
    D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction. Anal. Chem. 83(6), 1916–1923 (2011)PubMedGoogle Scholar
  35. 35.
    A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2019, 2791–2808 (2009)Google Scholar
  36. 36.
    K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014)PubMedGoogle Scholar
  37. 37.
    S. Proch, S. Yoshino, I. Gunjishima, S. Kosaka, N. Takahashi, N. Kato, et al., Acetylene-treated titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis. 8, 351–365 (2017)Google Scholar
  38. 38.
    S. Proch, S. Yoshino, N. Kato, N. Takahashi, Y. Morimoto, Titania nanotube arrays (TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts. Electrocatalysis. 7, 451–465 (2016)Google Scholar
  39. 39.
    S. Proch, S. Yoshino, N. Takahashi, S. Kosaka, K. Kodama, Y. Morimoto, CO-terminated Pt/Au codeposition on titania nanotube arrays (TNAs). Electrocatalysis. 8, 480–491 (2017)Google Scholar
  40. 40.
    S. Brimaud, R.J. Behm, Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J. Am. Chem. Soc. 135(32), 11716–11719 (2013)PubMedGoogle Scholar
  41. 41.
    Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Self-terminating growth of platinum films by electrochemical deposition. Science. 338(6112), 1327–1330 (2012)PubMedGoogle Scholar
  42. 42.
    D. Kim, J. Kim, Effect of anionic electrolytes and precursor concentrations on the electrodeposited Pt structures. Electroanalysis. 29, 387–391 (2017)Google Scholar
  43. 43.
    G. Jerkiewicz, Electrochemical hydrogen adsorption and absorption. Part 1: under-potential deposition of hydrogen. Electrocatalysis. 1, 179–199 (2010)Google Scholar
  44. 44.
    D. Sazou, K. Saltidou, M. Pagitsas, Understanding the effect of bromides on the stability of titanium oxide films based on a point defect model. Electrochim. Acta 76, 48–61 (2012)Google Scholar
  45. 45.
    D.C. Johnson, A study of the adsorption and desorption of iodine and iodide at platinum electrodes in 1.0M sulfuric acid. J. Electrochem. Soc. 119, 331–339 (1972)Google Scholar
  46. 46.
    D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, van der V, et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5(4), 300–306 (2013)PubMedGoogle Scholar
  47. 47.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods - Fundamentals and Applications, 2nd edn. (John Wiley & Sons, Inc., New York, 2001)Google Scholar
  48. 48.
    M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 133(43), 17428–17433 (2011)PubMedGoogle Scholar
  49. 49.
    J. Perez, E.R. Gonzalez, H.M. Villullas, Hydrogen evolution reaction on gold single-crystal electrodes in acid solutions. J. Phys. Chem. B 102, 10931–10935 (1998)Google Scholar
  50. 50.
    G. Jerkiewicz, Hydrogen sorption ATIN electrodes. Prog. Surf. Sci. 57, 137–186 (1998)Google Scholar
  51. 51.
    X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies. J. Am. Chem. Soc. 130(1), 370–381 (2008)PubMedGoogle Scholar
  52. 52.
    S.M. Alia, B.A. Larsen, S. Pylypenko, D.A. Cullen, D.R. Diercks, K.C. Neyerlin, et al., Platinum-coated nickel nanowires as oxygen-reducing electrocatalysts. ACS Catal. 4, 1114–1119 (2014)Google Scholar
  53. 53.
    Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82(15), 6321–6328 (2010)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Toyota Central R&D Labs., Inc.NagakuteJapan
  2. 2.Sandvik Materials TechnologySandvikenSweden

Personalised recommendations