Advertisement

One-Pot Synthesis of Highly Efficient Carbon-Supported Polyhedral Pt3Ni Alloy Nanoparticles for Oxygen Reduction Reaction

  • Yongqiang Liu
  • Hongming Chen
  • Chongchong Tian
  • Dongsheng GengEmail author
  • Dawei WangEmail author
  • Siriguleng BaiEmail author
Original Research

Abstract

The oxygen reduction reaction (ORR) properties were intensely affected by the facet of electrocatalysts. For example, (111) facet of Pt3Ni alloy has been proved to have excellent ORR electrocatalytic activity. Therefore, it could be very important to synthesize Pt3Ni nanocrystals with large proportion of (111) facet. However, most reported Pt3Ni polyhedron bound by (111) facets were synthesized using capping agents like oleylamine and oleic acid. These organic ligands will hinder the intrinsic ORR performance of catalyst and require tedious process to remove. Here, we report a one-pot synthesis of capping agents free for polyhedron Pt3Ni alloy nanoparticles on carbon (Pt3Ni/C) with large proportion of Pt3Ni (111) facets. The electrocatalysts achieved an enhancement of 224% in mass activity and 8.7-fold specific activity towards ORR in comparison with commercial Pt/C catalyst. The present study provides a simple method for designing highly efficient Pt alloy electrocatalysts.

Graphical Abstract

A one-pot process of capping agents free was applied to synthesize polyhedron Pt3Ni alloy nanoparticles on carbon (Pt3Ni/C), which features large proportion of Pt3Ni (111) facets and shows enhanced oxygen reduction reaction performance in comparison with commercial Pt/C.

Keywords

Oxygen reduction reaction Polyhedral Pt3Ni alloy nanoparticles (111) facet 

Notes

Acknowledgments

This work was supported by University of Science and Technology Beijing.

Supplementary material

12678_2019_547_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1714 kb)

References

  1. 1.
    A. Arico, S. Srinivasan, V. Antonucci, DMFCs: from fundamental aspects to technology development. Fuel Cells 1(2), 133–161 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245–4270 (2004)CrossRefGoogle Scholar
  3. 3.
    C.-J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala, R. Loukrakpam, S. Lim, L. Wang, B. Fang, Z. Xu, Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ. Sci. 1(4), 454–466 (2008)CrossRefGoogle Scholar
  4. 4.
    F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1(14), 2204–2219 (2010)CrossRefGoogle Scholar
  5. 5.
    M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43–51 (2012)CrossRefGoogle Scholar
  6. 6.
    J. Chen, B. Lim, E.P. Lee, Y. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1), 81–95 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: synthesis, properties, and applications. Chem. Rev. 110(6), 3767–3804 (2010)CrossRefGoogle Scholar
  8. 8.
    N.S. Porter, H. Wu, Z. Quan, J. Fang, Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 46(8), 1867–1877 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Wu, H. Yang, Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 46(8), 1848–1857 (2013)CrossRefGoogle Scholar
  10. 10.
    B.C. Steele, A. Heinzel, Materials for Sustainable Energy: a Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, Singapore, 2011), pp. 224–231Google Scholar
  11. 11.
    X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W. Xing, Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 4(8), 2736–2753 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Wu, A. Gross, H. Yang, Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 11(2), 798–802 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Niu, N. Becknell, Y. Yu, D. Kim, C. Chen, N. Kornienko, G.A. Somorjai, P. Yang, Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 15(11), 1188–1194 (2016)CrossRefGoogle Scholar
  14. 14.
    Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Cui, L. Gan, H.H. Li, S.H. Yu, M. Heggen, P. Strasser, Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12(11), 5885–5889 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y.M. Wang, High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction. Science 348(6240), 1230–1234 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Zhao, S. Takao, K. Higashi, T. Kaneko, G. Samjeskè, O. Sekizawa, T. Sakata, Y. Yoshida, T. Uruga, Y. Iwasawa, Simultaneous improvements in performance and durability of an octahedral PtNix/C electrocatalyst for next-generation fuel cells by continuous, compressive, and concave Pt skin layers. ACS Catal. 7(7), 4642–4654 (2017)CrossRefGoogle Scholar
  18. 18.
    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)CrossRefGoogle Scholar
  19. 19.
    H. Mistry, A.S. Varela, S. Kuehl, P. Strasser, B.R. Cuenya, Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 1(4), 16009 (2016)CrossRefGoogle Scholar
  20. 20.
    M.A. Montiel, F.J. Vidal-Iglesias, V. Montiel, J. Solla-Gullón, Electrocatalysis on shape-controlled metal nanoparticles: progress in surface cleaning methodologies. Curr. Opin. Electrochem. 1(1), 34–39 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, H. Yang, J. Fang, S. Zou, Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. Nano Lett. 10(2), 638–644 (2010)CrossRefGoogle Scholar
  22. 22.
    R.M. Arán-Ais, F.J. Vidal-Iglesias, J. Solla-Gullón, E. Herrero, J.M. Feliu, Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 27(4), 945–956 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Kang, C.B. Murray, Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 132(22), 7568–7569 (2010)CrossRefGoogle Scholar
  24. 24.
    F.J. Vidal-Iglesias, J. Solla-Gullón, E. Herrero, V. Montiel, A. Aldaz, J.M. Feliu, Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: evidences of atomic surface disordering. Electrochem. Commun. 13(5), 502–505 (2011)CrossRefGoogle Scholar
  25. 25.
    S.I. Choi, S. Xie, M. Shao, J.H. Odell, N. Lu, H.C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M.J. Kim, Y. Xia, Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13(7), 3420–3425 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Zhang, S.Y. Hwang, A. Trout, Z. Peng, Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 136(22), 7805–7808 (2014)CrossRefGoogle Scholar
  27. 27.
    Q. Li, H. Zhu, L. Zheng, L. Fan, N. Wang, Y. Rong, Y. Ren, J. Chen, J. Deng, X. Xing, Local chemical ordering and negative thermal expansion in PtNi alloy nanoparticles. Nano Lett. 17(12), 7892–7896 (2017)CrossRefGoogle Scholar
  28. 28.
    B.Y. Xia, H.B. Wu, Y. Yan, X.W. Lou, X. Wang, Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 135(25), 9480–9485 (2013)CrossRefGoogle Scholar
  29. 29.
    T. Kim, M. Takahashi, M. Nagai, K. Kobayashi, Preparation and characterization of carbon supported Pt and PtRu alloy catalysts reduced by alcohol for polymer electrolyte fuel cell. Electrochim. Acta 50(2–3), 817–821 (2004)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, F.-F. Shi, Y.-Y. Yang, W.-B. Cai, Carbon supported Pd–Ni–P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media. J. Power Sources 243, 369–373 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Huang, K. Li, Z. Chen, L. Luo, Y. Gu, D. Zhang, C. Ma, R. Si, J. Yang, Z. Peng, J. Zeng, Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 139(24), 8152–8159 (2017)CrossRefGoogle Scholar
  32. 32.
    J. Wang, P. Holt-Hindle, D. MacDonald, D.F. Thomas, A. Chen, Synthesis and electrochemical study of Pt-based nanoporous materials. Electrochim. Acta 53(23), 6944–6952 (2008)CrossRefGoogle Scholar
  33. 33.
    B.M. Leonard, Q. Zhou, D. Wu, F.J. DiSalvo, Facile synthesis of PtNi intermetallic nanoparticles: influence of reducing agent and precursors on electrocatalytic activity. Chem. Mater. 23(5), 1136–1146 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Zou, J. Li, T. Yuan, Y. Zhou, X. Li, H. Yang, Structural transformation of carbon-supported Pt3Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Nanoscale 6(18), 10686–10692 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Gan, M. Heggen, S. Rudi, P. Strasser, Core-shell compositional fine structures of dealloyed Pt(x)Ni(1-x) nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 12(10), 5423–5430 (2012)CrossRefGoogle Scholar
  36. 36.
    S.J. Bae, S.J. Yoo, Y. Lim, S. Kim, Y. Lim, J. Choi, K.S. Nahm, S.J. Hwang, T.-H. Lim, S.-K. Kim, P. Kim, Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance. J. Mater. Chem. 22(18), 8820–8825 (2012)CrossRefGoogle Scholar
  37. 37.
    L. Zou, J. Fan, Y. Zhou, C. Wang, J. Li, Z. Zou, H. Yang, Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 8(8), 2777–2788 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Wu, S. Yang, H. Yang, Facet-controlled metal alloy electrocatalysts for oxygen reduction reaction: unconventional post treatment of Pt3Ni octahedral catalysts for enhanced activity. ECS Trans. 61(31), 25–34 (2014)CrossRefGoogle Scholar
  39. 39.
    J.T. Gamler, H.M. Ashberry, S.E. Skrabalak, K.M. Koczkur, Random alloyed versus intermetallic nanoparticles: a comparison of electrocatalytic performance. Adv. Mater. 30(40), 1801563 (2018)CrossRefGoogle Scholar
  40. 40.
    H. Imai, M. Matsumoto, T. Miyazaki, K. Kato, H. Tanida, T. Uruga, Growth limits in platinum oxides formed on Pt-skin layers on Pt-Co bimetallic nanoparticles. Chem. Commun. 47(12), 3538–3540 (2011)CrossRefGoogle Scholar
  41. 41.
    G.A. Tritsaris, J. Greeley, J. Rossmeisl, J.K. Nørskov, Atomic-scale modeling of particle size effects for the oxygen reduction reaction on Pt. Catal. Lett. 141(7), 909–913 (2011)CrossRefGoogle Scholar
  42. 42.
    L. Gan, M. Heggen, R. O’Malley, B. Theobald, P. Strasser, Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13(3), 1131–1138 (2013)CrossRefGoogle Scholar
  43. 43.
    Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015)CrossRefGoogle Scholar
  44. 44.
    R. Chattot, T. Asset, J. Drnec, P. Bordet, J. Nelayah, L. Dubau, F. Maillard, Atomic-scale snapshots of the formation and growth of hollow PtNi/C nanocatalysts. Nano Lett. 17(4), 2447–2453 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.Sunan Institute for Molecular Engineering, Peking UniversityChangshuPeople’s Republic of China
  3. 3.College of ScienceInner Mongolia University of TechnologyHohhotPeople’s Republic of China

Personalised recommendations