An Exfoliated Graphite-Bismuth Vanadate Composite Photoanode for the Photoelectrochemical Degradation of Acid Orange 7 Dye

  • Benjamin O. Orimolade
  • Omotayo A. ArotibaEmail author
Originak Research


This work investigates the removal of acid orange 7 dye from aqueous solution through photo electrochemical technique using a composite of exfoliated graphite and bismuth vanadate (EG-BiVO4) as photoanode. Monoclinic sheelite BiVO4 nanoparticles were synthesised through the hydrothermal route and subsequently added to prepared EG to form a composite. The EG-BiVO4 composite was fully characterised through XRD, SEM and FTIR. The cyclic voltammograms of the EG-BiVO4 electrodes were obtained in potassium ferricyanide and ferrocyanide redox probe. The XRD result revealed that the BiVO4 has a monoclinic sheelite crystal lattice with particle size of 74.17 nm. The EG-BiVO4 photoanode was applied for the photoelectrochemical degradation of acid orange 7 dye. Concentration decay of the dye was monitored using the UV-Vis spectrophotometer. The photo-assisted process gave improved degradation efficiency of 88% within 90 min. Kinetics study revealed that the process followed the pseudo first-order kinetics and fast with apparent rate constant of 1.60 × 10−2 min−1. The results of this investigation reveal the potential application of BiVO4 photoanode in the photoelectrochemical treatment of dye contaminated water.

Graphical Abstract

Comparison of different degradation processes for the removal of dye in water on an exfoliated graphite-BiVO4 photoanode.


Bismuth vanadate Photoelectrochemical degradation Acid orange 7 dye Exfoliated graphite 


Funding information

Financial supports were received from the following institutions in South Africa: Faculty of Science, University of Johannesburg; Global Excellence and Stature (GES) doctoral support, University of Johannesburg; Centre for Nanomaterials Science Research, University of Johannesburg; National Research Foundation (CPRR Grant number: 98887 and 118546); and Water Research Commission (Grant Number: K5/2567).


  1. 1.
    A.B. dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98(12), 2369–2385 (2007)CrossRefGoogle Scholar
  2. 2.
    N. Barka, A. Assabbane, A. Nounah, Y.A. Ichou, Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres. J Hazard Mater 152(3), 1054–1059 (2008)CrossRefGoogle Scholar
  3. 3.
    W. Sun, C. Zhang, J. Chen, B. Zhang, H. Zhang, Y. Zhang, L. Chen, Accelerating biodegradation of a monoazo dye acid orange 7 by using its endogenous electron donors. J Hazard Mater 324(Pt B), 739–743 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Li, J. Qiu, X. Wang, H. Zhang, J Chem Soc Pak 39, 812 (2017)Google Scholar
  5. 5.
    S. Akazdam, M. Chafi, W. Yassine, B. Gourich, J Mater Environ Sci 8, 2993 (2017)Google Scholar
  6. 6.
    A. Shokri, 7, 119 Removal of acid red 33 from aqueous solution by fenton and photo fenton processes. J Chem Health Risk 7(2), 119–131 (2017)Google Scholar
  7. 7.
    E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Chem Eng J 317, 290 (2017)CrossRefGoogle Scholar
  8. 8.
    D. Zhou, Z. Chen, Q. Yang, C. Shen, G. Tang, S. Zhao, J. Zhang, D. Chen, Q. Wei, X. Dong, Facile construction of g-C3N4nanosheets/TiO2nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance. ChemCatChem 8(19), 3064–3073 (2016)CrossRefGoogle Scholar
  9. 9.
    M.G. Peleyeju, E.H. Umukoro, L. Tshwenya, R. Moutloali, O. Babalola, O.A. Arotiba, Photoelectrocatalytic water treatment systems: degradation, kinetics and intermediate products studies of sulfamethoxazole on a TiO2–exfoliated graphite electrode. RSC Adv 7(64), 40571–40580 (2017)CrossRefGoogle Scholar
  10. 10.
    B.N.S. Sampath, B.B.M.O.S. Oluwafemi, J Mater Sci Mater Electron 27, 592 (2016)CrossRefGoogle Scholar
  11. 11.
    L.M. Al-Harbi, E.H. El-Mossalamy, H.M. Arafa, A. Al-Owais, M.A. Shah, Mod Appl Sci 5, 130 (2011)Google Scholar
  12. 12.
    W. Tang, Q. Wang, X. Zeng, X. Chen, Photocatalytic degradation on Disperse Blue with modified nano-TiO2 film electrode. J Solid State Electrochem 16(4), 1429–1445 (2012)CrossRefGoogle Scholar
  13. 13.
    S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater 141(3), 581–590 (2007)CrossRefGoogle Scholar
  14. 14.
    C. Lizama, J. Freer, J. Baeza, H.D. Mansilla, Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catal Today 76(2-4), 235–246 (2002)CrossRefGoogle Scholar
  15. 15.
    Y.M. Hunge, M.A. Mahadik, V.S. Mohite, S.S. Kumbhar, N.G. Deshpande, K.Y. Rajpure, A.V. Moholkar, P.S. Patil, C.H. Bhosale, J Mater Sci Mater Electron 27, 1629 (2016)CrossRefGoogle Scholar
  16. 16.
    Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, K.Y. Rajpure, A.V. Moholkar, C.H. Bhosale, J Mater Sci Mater Electron 26, 8404 (2015)CrossRefGoogle Scholar
  17. 17.
    G. Kim, E.T. Igunnu, G.Z. Chen, Chem Eng J 244, 411 (2014)CrossRefGoogle Scholar
  18. 18.
    F. Chen, F. Yan, Q. Chen, Y. Wang, L. Han, Z. Chen, S. Fang, Fabrication of Fe3O4@SiO2@TiO2nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Dalton Trans 43(36), 13537 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Wu, W. Chen, L. Yan, Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. J Mater Chem A 2(8), 2765 (2014)CrossRefGoogle Scholar
  20. 20.
    F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv 4(53), 27654 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Xia, J. Li, J. Bai, L. Li, S. Chen, B. Zhou, BiVO4 photoanode with exposed (040) facets for enhanced photoelectrochemical performance. Nano-Micro Lett 10(1), 11 (2018)CrossRefGoogle Scholar
  22. 22.
    C.S. Yaw, M.N. Chong, A.K. Soh, Bismuth vanadate-based photoelectrodes for photoelectrochemical water splitting: synthesis and characterisation. Adv Sci Technol 99, 9–16 (2016)CrossRefGoogle Scholar
  23. 23.
    T.G. Vo, J.M. Chiu, C.Y. Chiang, Y. Tai, Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting. Sol Energy Mater Sol Cells 166, 212–221 (2017)CrossRefGoogle Scholar
  24. 24.
    H.L. Tan, R. Amal, Y.H. Ng, Exploring the different roles of particle size in photoelectrochemical and photocatalytic water oxidation on BiVO4. ACS Appl Mater Interfaces 8(42), 28607–28614 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Wang, X. Huang, S. Wu, Y. Zhou, L. Wang, H. Shi, Y. Liang, B. Zou, Appl Catal B Environ, 134, 293–135 (2013)Google Scholar
  26. 26.
    W. Wang, J. Wang, Z. Wang, X. Wei, L. Liu, Q. Ren, W. Gao, Y. Liang, H. Shi, p–n junction CuO/BiVO4 heterogeneous nanostructures: synthesis and highly efficient visible-light photocatalytic performance. Dalton Trans 43(18), 6735–6743 (2014)CrossRefGoogle Scholar
  27. 27.
    L. Dong, S. Guo, S. Zhu, D. Xu, L. Zhang, M. Huo, X. Yang, Sunlight responsive BiVO4photocatalyst: effects of pH on L-cysteine-assisted hydrothermal treatment and enhanced degradation of ofloxacin. Catal Commun 16(1), 250–254 (2011)CrossRefGoogle Scholar
  28. 28.
    S.S. Dunkle, R.J. Helmich, K.S. Suslick, J Phys Chem C 113, 11980 (2009)CrossRefGoogle Scholar
  29. 29.
    O.M. Ama, O.A. Arotiba, Exfoliated graphite/titanium dioxide for enhanced photoelectrochemical degradation of methylene blue dye under simulated visible light irradiation. J Electroanal Chem 803, 157–164 (2017)CrossRefGoogle Scholar
  30. 30.
    C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, Synthesis of visible-light responsive graphene oxide/TiO2composites with p/n heterojunction. ACS Nano 4(11), 6425–6432 (2010)CrossRefGoogle Scholar
  31. 31.
    X. Wang, G. Li, J. Ding, H. Peng, K. Chen, Facile synthesis and photocatalytic activity of monoclinic BiVO4 micro/nanostructures with controllable morphologies. Mater Res Bull 47(11), 3814–3818 (2012)CrossRefGoogle Scholar
  32. 32.
    S. Xiao, H. Chen, Z. Yang, X. Long, Z. Wang, Z. Zhu, Y. Qu, S. Yang, J Phys Chem C 119, 23350 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Radoń, D. Łukowiec, Structure of nanographite synthesised by electrochemical oxidation and exfoliation of polycrystalline graphite. Micro Nano Lett 12(12), 955–959 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater Lett 63(22), 1939–1942 (2009)Google Scholar
  35. 35.
    V. Ţucureanu, A. Matei, A.M. Avram, V. Ţucureanu, A. Matei, A. Marius, A. Ftir, A. Matei, A.M. Avram, FTIR spectroscopy for carbon family study. Crit Rev Anal Chem 46(6), 502–520 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Centre for Nanomaterials Science ResearchUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations