Advertisement

The Effect of Sputtered Pt40Pd57Al3 Thin Film Thickness on SO2(aq) Electro-Oxidation

  • Anzel FalchEmail author
  • Adam Shnier
  • Daniel Wamwangi
  • Dave Billing
  • Roelof Jacobus Kriek
  • Zarco Geldenhuys
Original Research
  • 24 Downloads

Abstract

The influence of sputtered Pt40Pd57Al3 thin films of varying thickness, in the as-deposited (AD) and annealed (AN) state, was investigated for the electro-oxidation of aqueous SO2. From physical characterisation (scanning electron microscopy (SEM) and grazing incidence X-ray diffraction (GIXRD)), significant differences were found in the morphology and crystallinity between AD and AN samples. In terms of electrochemical activity, the current output for the AD and AN thin films decreased as the thickness increased, whilst the AN thin films in general resulted in lower current outputs. No specific trend was observed for stability in an acidic environment and a 60 nm Pt40Pd57Al3 thin film proved to be the optimum thickness for aqueous SO2 electro-oxidation. In addition, the 60 nm Pt40Pd57Al3 AN thin film outperformed pure Pt (60 nm, AD and AN) in terms of current density and stability, emphasising the fact that multicomponent electrocatalysts can be superior compared with their pure metal counterparts.

Graphical Abstract

.

Keywords

Sputtering Thin film thickness Annealing SO2 electro-oxidation 

Notes

Supplementary material

12678_2019_526_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1219 kb)

References

  1. 1.
    D.L. Stojić, M.P. Marčeta, S.P. Sovilj, Š.S. Miljanić, Hydrogen generation from water electrolysis—possibilities of energy saving. J. Power Sources 118(1-2), 315–319 (2003)CrossRefGoogle Scholar
  2. 2.
    R. C. Weast, CRC Handbook of Chemistry and Physics, 70th edn. (CRC Press Inc, Boca Raton, 1989–1990)Google Scholar
  3. 3.
    W.S. Douglas, Dogma-breaking catalysis. Nature. 553, 160–161 (2018)Google Scholar
  4. 4.
    A. Lokkiluoto, P.A. Taskinen, M. Gasik, I.V. Kojo, H. Peltola, M.H. Barker, K.-H. Kleifges, Novel process concept for the production of H2 and H2SO4 by SO2-depolarized electrolysis. Environ. Dev. Sustain. 14(4), 529–540 (2012)Google Scholar
  5. 5.
    Z. Meddeb, H. Hajjem, A. Mabrouk, N. Hajjaji, N. Hajji, Idea, process and analyses of hydrogen production from atmospheric pollutant. Int. J. Hydrogen Energ. 42(13), 8602–8610 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Xue, P. Zhang, S. Chen, L. Wang, Pt-based bimetallic catalysts for SO2-depolarized electrolysis reaction in the hybrid sulfur process. Int. J. Hydrogen Energ. 39(26), 14196–14203 (2014)Google Scholar
  7. 7.
    A.J. Appleby, B. Pinchon, The mechanism of the electrochemical oxidation of sulfur dioxide in sulfuric acid solutions. J. Electroanal. Chem. 95(1), 59–71 (1979)CrossRefGoogle Scholar
  8. 8.
    C. Quijada, A. Rodes, J. Vazquez, J. Perez, A. Aldaz, Electrochemical behaviour of aqueous sulphur dioxide at polycrystalline Pt electrodes in acidic medium. A voltammetric and in-situ FT-IR study Part II. Promoted oxidation of sulphur dioxide. Reduction of sulphur dioxide. J. Electroanal. Chem. 398(1-2), 105–115 (1995)CrossRefGoogle Scholar
  9. 9.
    E.T. Seo, D.T. Sawyer, Electrochemical oxidation of dissolved sulphur dioxide at platinum and gold electrodes. Electrochim. Acta 10(3), 239–252 (1965)CrossRefGoogle Scholar
  10. 10.
    J. O’Brien, J. Hinkley, S. Donne, The electrochemical oxidation of aqueous sulfur dioxide. J. Electrochem. Soc. 157(9), F111 (2010)CrossRefGoogle Scholar
  11. 11.
    A. Falch, V.A. Badets, C. Labrugère, R.J. Kriek, Co-sputtered PtxPdyAlz thin film electrocatalysts for the production of hydrogen via SO2 (aq) electro-oxidation. Electrocatalysis 7(5), 376–390 (2016)Google Scholar
  12. 12.
    A. Falch, V.A. Lates, H.S. Kotze, R.J. Kriek, The effect of rapid thermal annealing on sputtered Pt and Pt3Pd2 thin film electrocatalysts for aqueous SO2 electro-oxidation. Electrocatalysis 7(1), 33–41 (2016)Google Scholar
  13. 13.
    A. Falch, V.A. Lates, R.J. Kriek, Combinatorial plasma sputtering of PtxPdy thin film electrocatalysts for aqueous SO2 electro-oxidation. Electrocatalysis 6(3), 322–330 (2015)Google Scholar
  14. 14.
    C. Boragno, F.B.d. Mongoet, R. Felici, I.K. Robinson, Critical thickness for the agglomeration of thin metal films. Phys. Rev. B 79(15), 155443 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Koutsopoulos, S.B. Rasmussen, K.M. Eriksen, R. Fehrmann, The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts. App. Catal. A: Gen. 306, 142–148 (2006)CrossRefGoogle Scholar
  16. 16.
    W.W. Mullins, The effect of thermal grooving on grain boundary motion. Acta Metall. 6(6), 414–427 (1958)CrossRefGoogle Scholar
  17. 17.
    R. Saxena, M. Frederick, G. Ramanath, W. Gill, J. Plawsky, Phys.l Rev. B. 72(115425), 1 (2005)Google Scholar
  18. 18.
    H. Kim, N. Theodore, T. Alford, Comparison of texture evolution in Ag and Ag(Al) alloy thin films on amorphous SiO2. J. Appl. Phys. 95(9), 5180–5188 (2004)Google Scholar
  19. 19.
    R.T. Downs, M. Hall-Wallace, Am. Min. 88, 247–250 (2003)CrossRefGoogle Scholar
  20. 20.
    H. Galinski, T. Ryll, L. Schlagenhauf, F. Rechberger, S. Ying, L.J. Gauckler, F.C. Mornaghini, Y. Ries, R. Spolenak, M. Döbeli, Dealloying of platinum-aluminum thin films: dynamics of pattern formation. Phys. Rev. Lett. 107(22), 225503 (2011)CrossRefGoogle Scholar
  21. 21.
    T. Harumoto, Y. Tamura, T. Ishiguro, Ultrafine nanoporous palladium-aluminum film fabricated by citric acid-assisted hot-water-treatment of aluminum-palladium alloy film. AIP Adv. 5(1), 017146 (2015)CrossRefGoogle Scholar
  22. 22.
    A.S. Loselevich, V.V. Sivak, Cotunneling and polaronic effect in granular systems. Phys. Rev. B 95(21), 214205 (2017)CrossRefGoogle Scholar
  23. 23.
    S.V.G. Pacchioni, Oxide Ultrathin Films: Science and Technology (Wiley-VCH, Singapore, 2012), p. 351Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrochemistry for Energy & Environment Group, Research Focus Area: Chemical Resource Beneficiation (CRB)North-West UniversityPotchefstroomSouth Africa
  2. 2.School of PhysicsUniversity of WitwatersrandJohannesburgSouth Africa
  3. 3.School of ChemistryUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations