Oxygen Reduction on Methanol-Tolerant Carbon-Supported PtxSy Nanoparticles Prepared by a Single-Step Low-Temperature Method

  • Emilia A. CarbonioEmail author
  • Ubirajara P. Rodrigues-Filho
  • Alexandre Mesquita
  • Richard Landers
  • Ernesto R. Gonzalez
Original Research


In direct methanol fuel cells (DMFCs), the methanol crossover from the anode to the cathode is a major cause of power density loss because of the overpotential arising due to the parasitic reaction of methanol oxidation at the cathode. Catalysts modified with S have shown better methanol tolerance; however, the preparation routes often require high temperatures or pressures and very long times, making these expensive and unlikely to be used in large scale. Here, we report on a single-step low-temperature method used to prepare a carbon-supported PtxSy catalyst. Moreover, we show that the catalyst shows lower depolarization in the presence of methanol and study the effect of reductive thermal treatment and electrochemical potential cycling.

Graphical Abstract


Oxygen reduction reaction Methanol tolerance DMFC PtxSy nanoparticles 



The authors would like to acknowledge Fundação de Amparo à Pesquisa—FAPESP—and Conselho Nacional de Desenvolvimento Cientıiífico e Tecnoloógico—CNPq—for the financial assistance. EAC thanks CNPq for the fellowship grant (Proc.142095/2007-9).


  1. 1.
    Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl Energ 88(4), 981–1007 (2011)CrossRefGoogle Scholar
  2. 2.
    T.S. Zhao, W.W. Yang, R. Chen, Q.X. Wu, Towards operating direct methanol fuel cells with highly concentrated fuel. J. Power Sources 195(11), 3451–3462 (2010)CrossRefGoogle Scholar
  3. 3.
    A.S. Arico, S. Srinivasan, V. Antonucci, DMFCs: from fundamental aspects to technology development. Fuel Cells 1(2), 133–161 (2001)CrossRefGoogle Scholar
  4. 4.
    Y.J. Feng, A. Gago, L. Timperman, N. Alonso-Vante, Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim. Acta 56(3), 1009–1022 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Gochi-Ponce, G. Alonso-Nunez, N. Alonso-Vante, Synthesis and electrochemical characterization of a novel platinum chalcogenide electrocatalyst with an enhanced tolerance to methanol in the oxygen reduction reaction. Electrochem. Commun. 8(9), 1487–1491 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Lewera, J. Inukai, W.P. Zhou, D. Cao, H.T. Duong, N. Alonso-Vante, A. Wieckowski, Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media. Electrochim. Acta 52(18), 5759–5765 (2007)CrossRefGoogle Scholar
  7. 7.
    N.A. Vante, H. Tributsch, Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature 323(6087), 431–432 (1986)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, J.J. Zhang, D.P. Wilkinson, H.J. Wang, Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J. Power Sources 156(2), 171–182 (2006)CrossRefGoogle Scholar
  9. 9.
    C.H. Lai, M.Y. Lu, L.J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 22(1), 19–30 (2012)CrossRefGoogle Scholar
  10. 10.
    Gonzalez; E.R.; Ticianelli; E.A.; Pinheiro; A.L.N.; Perez, J. Processo de obtenção de catalisador de platina dispersa ancorada em substrato através da redução por ácido fórmico. 1997Google Scholar
  11. 11.
    A.L. Ankudinov, B. Ravel, J.J. Rehr, S.D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58(12), 7565–7576 (1998)CrossRefGoogle Scholar
  12. 12.
    M. Alain, M. Jacques, M.B. Diane, P. Karine, MAX: multiplatform applications for XAFS. J. Phys. Conf. Ser. 190 (2009)Google Scholar
  13. 13.
    X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. John Wiley: New York, 1998Google Scholar
  14. 14.
    Schmidt T. J.; Gasteiger, H. A., Rotating thin film method forsupported catalysts. In Handbook of fuel cells: fundamentals, technology and applications, VIELSTICH; W.L. A., G. H. A., Ed. 2003; Vol. 2, pp 316–333Google Scholar
  15. 15.
    In X-ray absorption fine structure: Proceedings of the VI International Conference on X-ray Absorption Fine Structures, VI international conference on X-ray absorption fine structure, XAFS VI., Hasnain, S. S., Ed. Ellis Horwood, New York: 1991; p 752Google Scholar
  16. 16.
    F. Bernardi, M.C.M. Alves, C.W. Scheeren, J. Dupont, J. Morais, In situ studies of nanoparticles under reaction with sulfur by XAS. J Electron Spectrosc 156, 186–190 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Bensaddik, H. Dexpert, D. Bazin, A. Caballero, F. Villain, B. Didillon, J. Lynch, In-situ study by XAS of the sulfuration of the Pt and PtRe/Al2O3 systems. Physica B 209(1–4), 677–678 (1995)CrossRefGoogle Scholar
  18. 18.
    M. Vaarkamp, J.T. Miller, F.S. Modica, G.S. Lane, D.C. Koningsberger, Sulfur poisoning of a Pt/Bak-Ltl catalyst—a catalytic and structural study using hydrogen chemisorption and X-ray absorption-spectroscopy. J. Catal. 138(2), 675–685 (1992)CrossRefGoogle Scholar
  19. 19.
    F. Bernardi, M.C.M. Alves, A. Traverse, D.O. Silva, C.W. Scheeren, J. Dupont, J. Morais, Monitoring atomic rearrangement in PtxPd1-x (x = 1, 0.7, or 0.5) nanoparticles driven by reduction and sulfidation processes. J. Phys. Chem. C 113(10), 3909–3916 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Dembowski, L. Marosi, M. Essig, Platinum sulfide by XPS. Surf. Sci. Spectra 2(2), 104–108 (1993)CrossRefGoogle Scholar
  21. 21.
    J. Dembowski, L. Marosi, M. Essig, Platinum disulfide by XPS. Surf. Sci. Spectra 2(2), 133–137 (1993)CrossRefGoogle Scholar
  22. 22.
    W. Jaegermann, D. Schmeisser, Reactivity of layer type transition-metal chalcogenides towards oxidation. Surf. Sci. 165(1), 143–160 (1986)CrossRefGoogle Scholar
  23. 23.
    D.P. Griffis, R.W. Linton, Quantitative comparison of direct and derivative AES with XPS of metal sulfides. Surf. Interface Anal. 4(5), 197–203 (1982)CrossRefGoogle Scholar
  24. 24.
    E.G. Ciapina, E.A. Carbonio, F. Colmati, E.R. Gonzalez, The effect of adsorption of thiourea on the particle size of supported platinum nanocatalysts synthesized by chemical reduction. J. Power Sources 175(1), 18–25 (2008)CrossRefGoogle Scholar
  25. 25.
    J.D. Padmos, P. Zhang, Surface structure of organosulfur stabilized silver nanoparticles studied with X-ray absorption spectroscopy. J. Phys. Chem. C 116(43), 23094–23101 (2012)CrossRefGoogle Scholar
  26. 26.
    D.Y. Petrovykh, H. Kimura-Suda, A. Opdahl, L.J. Richter, M.J. Tarlov, L.J. Whitman, Alkanethiols on platinum: multicomponent self-assembled monolayers. Langmuir 22(6), 2578–2587 (2006)CrossRefGoogle Scholar
  27. 27.
    J.M. Ziegelbauer, V.S. Murthi, C. O'Laoire, A.F. Guila, S. Mukerjee, Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications. Electrochim. Acta 53(17), 5587–5596 (2008)CrossRefGoogle Scholar
  28. 28.
    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, 2000)Google Scholar
  29. 29.
    A. Damjanovic, V. Brusic, Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim. Acta 12(6), 615–61+ (1967)CrossRefGoogle Scholar
  30. 30.
    D.B. Sepa, M.V. Vojnovic, A. Damjanovic, Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum-electrodes. Electrochim. Acta 26(6), 781–793 (1981)CrossRefGoogle Scholar
  31. 31.
    A. Damjanovic, M.A. Genshaw, Dependence of kinetics of 02 dissolution at Pt on conditions for adsorption of reaction intermediates. Electrochim. Acta 15(7), 1281–128+ (1970)CrossRefGoogle Scholar
  32. 32.
    A. Damjanovic, D.B. Sepa, M.V. Vojnovic, New evidence supports the proposed mechanism for O2 reduction at oxide free platinum-electrodes. Electrochim. Acta 24(8), 887–889 (1979)CrossRefGoogle Scholar
  33. 33.
    S. Doniach, M. Sunjic, Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C Solid State Phys. 3(2), 285–291 (1970)CrossRefGoogle Scholar
  34. 34.
    John F. Moulder, William F. Stickle, Peter E. Sobol, Kenneth D. Bomben 1995, Handbook of X ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation: USAGoogle Scholar
  35. 35.
    Z. Paal, M. Muhler, R. Schlogl, The possible interpretation of Xp spectra of supported Pt catalysts in the oxidized and Sulfided state. J. Catal. 143(1), 318–321 (1993)CrossRefGoogle Scholar
  36. 36.
    D.X. Cao, A. Wieckowski, J. Inukai, N. Alonso-Vante, Oxygen reduction reaction on ruthenium and rhodium nanoparticles modified with selenium and sulfur. J. Electrochem. Soc. 153(5), A869–A874 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Eletroquímica, Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, BESSY IIBerlinGermany
  3. 3.Grupo de Química de Materiais Híbridos e Inorgânicos, Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  4. 4.Instituto de Geociências e Ciências ExatasUniversidade Estadual PaulistaRio ClaroBrazil
  5. 5.Instituto de Física ‘Gleb Wataghin’Universidade Estadual de CampinasCampinasBrazil

Personalised recommendations