Electrochemical Sensing of Dopamine Using Onion-like Carbons and Their Carbon Nanofiber Composites

  • Okoroike C. Ozoemena
  • Leshweni J. ShaiEmail author
  • Tobile Maphumulo
  • Kenneth I. OzoemenaEmail author
Original Research


This work describes the electrochemical detection of dopamine in samples (pure raw materials as well as pharmaceutical formulation) using onion-like carbon (OLC) and its carbon nanofiber composites (OLC-CNF). The OLC-CNF and precursor materials (polyacrylonitrile (PAN) fiber and OLC-PAN) were synthesized using electrospinning process. The morphologies of the samples were obtained using scanning electron microscopy (SEM) while surface area and porosity were determined using the Brunauer–Emmett–Teller (BET) analysis. OLC gave the best surface area (279 m2 g−1) and highest pore volume (1.2 cm3 g−1). To determine electrochemical sensing properties, the materials were drop-cast on the glassy carbn electrode (GCE). The electron transfer properties decrease as follows: OLC > OLC-PAN > OLC-CNF > PAN, suggesting that OLC is the most conductive materials. The modified GCE were used as sensors for the dopamine using electrochemical techniques such as cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). OLC and OLC-CNF gave comparable electrocatalytic activities in terms of sensitivity and limit of detection (OLC 1.23 μM and sensitivity of 0.74 μA/μM, and OLC-CNF 1.42 μM, 0.31 μA/μM). The high performance of OLC is attributed to its advantageous nanoparticulate nature and high conductivity. Both sensors (OLC and OLC-CNF) could be reliably used in the assay of dopamine raw material and its pharmaceutical formulation, dopamine HCl injection (Rotexmedica®). One of the key fndings here is that the incorporation of the CNF into the OLC does not significantly impact on its inherent tensile strain that defines its electrochemical performance.

Graphical Abstract

Onion-like carbon (OLC) and its carbon nanofiber (CNF) composites gave comparable electrocatalysis toward sensitive and selective detection of dopamine.


Onion-like carbon Carbon nanofiber Polyacrylonitrile Nanofiber Dopamine Square wave voltammetry Electrochemical impedance spectroscopy 



This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF). O.C. Ozoemena is grateful to the DST-NRF for the MTech degree “DST-NRF Innovation and Priority Research Areas scholarship.” We thank Dr. Nicholas Musyoka (CSIR, Pretoria) for assistance and access to their electrospinning facility.


  1. 1.
    W. Zhang, R. Yuan, Y.Q. Chai, Y. Zhang, S.H. Chen, A simple strategy based on lanthanum–multiwalled carbon nanotube nanocomposites for simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Sens Actuators B Chem 166, 601–607 (2012)CrossRefGoogle Scholar
  2. 2.
    G. Xu, S. Liang, M. Zhang, J. Fan, J. Feng, X. Yu, Studies on the electrochemical and dopamine sensing properties of AgNP-modified carboxylated cellulose nanocrystal-doped poly(3,4-ethylenedioxythiophene). Ionics 23(11), 3211–3218 (2017)CrossRefGoogle Scholar
  3. 3.
    K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine. Anal. Bioanal. Chem. 405(11), 3753–3771 (2013)CrossRefGoogle Scholar
  4. 4.
    M. Perry, Q. Li, R.T. Kennedy, Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal. Chim. Acta 653(1), 1–22 (2009)CrossRefGoogle Scholar
  5. 5.
    K.M. Promod, R. Ankush, P.S. Netra, K.K. Gopal, Detection of potential microbial antigens by immuno-PCR (PCR-amplified immunoassay). J. Med. Microbiol. 63, 627–641 (2014)CrossRefGoogle Scholar
  6. 6.
    J.Y. Park, S.W. Myung, I.S. Kim, D.K. Choi, S.J. Kwon, S.H. Yoon, Simultaneous measurement of serotonin, dopamine and their metabolites in mouse brain extracts by high-performance liquid chromatography with mass spectrometry following derivatization with ethyl chloroformate. Biol. Pharm. Bull. 36(2), 252–258 (2013)CrossRefGoogle Scholar
  7. 7.
    T. Jaya, K. Razia, V. Divya, A validated HPLC-UV method and optimization of sample preparation technique for norepinephrine and serotonin in mouse brain. Pharm. Biol. 53(10), 1539–1544 (2015)CrossRefGoogle Scholar
  8. 8.
    C.G. Qian, S. Zhu, P.J. Feng, Y.L. Chen, J.C. Yu, X. Tang, Y. Liu, Q.D. Shen, Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS Appl. Mater. Interfaces 7(33), 18581–18589 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Njagi, M.M. Chernov, J.C. Leiter, S. Andereescu, Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82(3), 989–996 (2010)CrossRefGoogle Scholar
  10. 10.
    Y.C. Li, Y. Liu, J. Liu, H. Tang, C. Cao, D.S. Zhao, Y. Ding, Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors. Sci. Rep. 5(1), 7699–7706 (2015)CrossRefGoogle Scholar
  11. 11.
    S.G. Ge, M. Yan, J.J. Lu, M. Zhang, F. Yu, J.H. Yu, X.R. Song, S.L. Yu, Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosens. Bioelectron. 31(1), 49–54 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Oztekin, M. Tok, E. Bilici, L. Mikoliunaite, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius, Electrochim. Acta 76, 201–207 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Mohadesi, M.A. Karimi, M. Pourfarsi, A new negative charged self-assembled monolayer for selective electroanalytical determination of dopamine in the presence of ascorbic acid. Int. J. Electrochem. Sci. 6, 309–316 (2011) (2016)Google Scholar
  14. 14.
    O.O. Fashedemi, K.I. Ozoemena, A facile approach to the synthesis of hydrophobic iron tetrasulfophthalocyanine (FeTSPc) nano-aggregates on multi-walled carbon nanotubes: A potential electrocatalyst for the detection of dopamine. Sensors Actuators B Chem. 160(1), 7–14 (2011)CrossRefGoogle Scholar
  15. 15.
    G.T. Gnahore, T. Velasco-Torrijos, J. Colleran, The selective electrochemical detection of dopamine using a sulfated β-cyclodextrin carbon paste electrode. Electrocatalysis 8(5), 459–471 (2017)CrossRefGoogle Scholar
  16. 16.
    W.T. Wang, G.Y. Xu, X.T. Cui, G. Sheng, X.L. Luo, Enhanced catalytic and dopamine sensing properties of electrochemically re-duced conducting polymer nanocomposite doped with pure graphene oxide. Biosens. Bioelectron. 58, 153–156 (2014)CrossRefGoogle Scholar
  17. 17.
    G.Y. Xu, W.T. Wang, B.B. Li, Z.L. Luo, X.L. Luo, A dopamine sensor based on a carbon paste electrode modified with DNAdoped poly(3,4-ethylene-dioxythiophene). Microchim. Acta 182(3-4), 679–685 (2015)CrossRefGoogle Scholar
  18. 18.
    Y.-J. Ko, J.-M. Cho, I. Kim, D.S. Jeong, K.-S. Lee, J.-K. Park, Y.-J. Baik, H.-J. Choi, S.-C. Lee, W.-S. Lee, Inherently-forced tensile strain in Nanodiamond-derived onion-like carbon: Consequences in defect-induced electrochemical activation. Sci. Rep. 6(1), 23913 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Huang, Y.-E. Miao, S. Ji, W.W. Tjiu, T. Liu, Electrospun carbon nanofibers decorated with Ag−Pt bimetallic nanoparticles for selective detection of dopamine. ACS Appl. Mater. Interfaces 6, 12449–−12456 (2014)CrossRefGoogle Scholar
  20. 20.
    M.M. Hantel, V. Presser, J.K. McDonough, G. Feng, P.T. Cummings, Y. Gogotsib, R. Kötz, In situ electrochemical dilatometry of onion-like carbon and carbon black. J. Electrochem. Soc. 159(11), A1897–A1903 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Makgopa, P.M. Ejikeme, C.J. Jafta, K. Raju, M. Zeiger, V. Presser, K.I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion like carbon/birnessite-type manganese oxide nanohybrids. J. Mater. Chem. A 3, 34803490 (2015)CrossRefGoogle Scholar
  22. 22.
    K. Bogdanov, A. Fedorov, V. Osipov, T. Enoki, K. Takai, T. Hayashi, V. Ermakov, S. Moshkalev, A. Baranov, Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies. Carbon 73, 78–86 (2014)CrossRefGoogle Scholar
  23. 23.
    Y. Gao, Y.S. Zhou, M. Qian, X.N. He, J. Redepenning, P. Goodman, H.M. Li, L. Jiang, Y.F. Lu, Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51, 52–58 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Mao, T.A. Hatton, G.C. Rutledge, A review of electrospun carbon fibers as electrode materials for energy storage. Curr. Org. Chem. 17(13), 1390–1401 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Ejaz, Y. Joo, S. Jeon, Fabrication of 1,4-bis(aminomethyl)benzene and cobalt hydroxide @graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin. Sensors Actuators B Chem. 240, 297–307 (2017)CrossRefGoogle Scholar
  26. 26.
    G.P. Keeley, N. McEvoy, H. Nolan, S. Kumar, E. Rezvani, M. Holzinger, S. Cosniera, G.S. Duesberg, Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films. Anal. Methods 4, 2048 (2012)CrossRefGoogle Scholar
  27. 27.
    Y.R. Kim, S. Bong, Y.J. Kang, Y. Yang, R.K. Mahajan, J.S. Kim, H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 25(10), 2366–2369 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Faculty of ScienceTshwane University of TechnologyPretoriaSouth Africa
  2. 2.Department of ChemistryUniversity of PretoriaPretoriaSouth Africa
  3. 3.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations