Advertisement

Bimetallic Pd/SnO2 Nanoparticles on Metal Organic Framework (MOF)-Derived Carbon as Electrocatalysts for Ethanol Oxidation

  • Adewale K. Ipadeola
  • Rasmita Barik
  • Sekhar C. Ray
  • Kenneth I. OzoemenaEmail author
Original Research

Abstract

Bimetallic Pd/SnO2 nanoparticle electrocatalysts on metal organic framework-derived carbon (MOFDC) were successfully synthesized using microwave-assisted strategies and explored for ethanol oxidation reaction (EOR) in alkaline solution. The materials were thoroughly characterized using XRD, XPS, TEM, and Raman. TEM showed that Pd/SnO2/MOFDC gave the least average particle size of 5.5 nm compared to its counterparts on carbon black (CB). The Pd/SnO2/MOFDC gave the best electrocatalytic performance in terms of high electrochemical active surface area (ECSA) of 962 cm2 mg−1, low onset potential and overpotential for EOR, and high current density (j) of four times more than those of the Pd/CB electrocatalyst. In addition, Pd/SnO2/MOFDC showed superior kinetic parameter (in terms of the Tafel slope (b) = 216.1 ± 8 mV dec−1) and least combined resistance (R = Rs + Rct). These results show that the Pd/SnO2/MOFDPC nanoparticle electrocatalyst is promising for EOR with improved electrocatalytic properties for application in direct ethanol fuel cell (DEFC).

Graphical Abstract

Microwaved-assisted-synthesized Pd/SnO2 nano-catalyst supported on metal organic framework-derived carbon (MOFDC) shows excellent electrocatalytic activities for ethanol oxidation reaction in alkaline medium.

Keywords

MOF-derived carbon Pd/SnO2 nano-electrocatalysts Microwave-assisted synthesis methods Ethanol oxidation reaction Tafel slope Electrochemical impedance spectroscopy 

Notes

Acknowledgments

A. K. Ipadeola is grateful to the DST-NRF-TWAS African Renaissance for PhD scholarship. Opinions expressed and conclusions of this study are those of the authors and not necessarily to be attributed to DST-NRF-TWAS and Wits University.

Funding Information

This work was supported by the Department of Science and Technology (DST), National Research Foundation (NRF), the World Academy of Science (TWAS), and the University of the Witwatersrand (Wits).

References

  1. 1.
    K.I. Ozoemena, RSC Adv. 6, 89523–89550 (2016)Google Scholar
  2. 2.
    A.V. Tripkovi’c, K. DjPopovi’c, B.N. Grgur, B. Blizanac, P.N. Ross, N.M. Markovic, Electrochem. Acta 47(22–23), 3707–3714 (2002)Google Scholar
  3. 3.
    V. Baglio, V. Antonucci, A.S. Aric’o, Advances in Nanotechnology, Materials and Devices (Wiley-VCH GmbH and Co, 2009), pp. 1–78Google Scholar
  4. 4.
    E. Antolini, E.R. Gonzalez, J. Power Sources 195, 3431–3450 (2010)Google Scholar
  5. 5.
    Q. He, W. Chen, S. Mukerjee, S. Chen, F. Laufek, J. Power Sources 18(2), 298–304 (2009)Google Scholar
  6. 6.
    P.C. Su, H.S. Chen, T.Y. Chen, C.W. Liu, C.H. Lee, J.F. Lee, T.S. Chan, K.W. Wang, Int. J. Hydrog. Energy 38(11), 4474–4482 (2013)Google Scholar
  7. 7.
    Y.H. Qin, H.H. Yang, X.S. Zhang, P. Li, C.A. Ma, Int. J. Hydrog. Energy 35(15), 7667–7674 (2010)Google Scholar
  8. 8.
    Z. Liu, X. Zhang, L. Hong, Electrochem. Commun. 11(4), 925–928 (2009)Google Scholar
  9. 9.
    P. Fageria, S. Uppala, R. Nazir, S. Gangopadhyay, C.–.H. Chang, M. Basu, S. Pande, Langmuir 32(39), 10054–10064 (2016)Google Scholar
  10. 10.
    Y. Zhao, X. Yang, J. Tian, F. Wang, L. Zhan, Int. J. Hydrog. Energy 35(8), 3249–3257 (2010)Google Scholar
  11. 11.
    Y. Wang, Z.M. Sheng, H. Yang, S.P. Jiang, C.M. Li, Int. J. Hydrog. Energy 35(19), 10087–10093 (2010)Google Scholar
  12. 12.
    R.N. Singh, A. Singh, Carbon 47(1), 271–278 (2009)Google Scholar
  13. 13.
    A.E. Fahim, R.M. Abdel-Hameed, N.K. Allam, New J. Chem 42, 6144–6160 (2018)Google Scholar
  14. 14.
    J. Gao, J. Miao, P.-Z. Li, W.Y. Teng, L. Yang, Y. Zhao, B. Liu, Q. Zhang, Chem. Commun. 50(29), 3786–3788 (2014)Google Scholar
  15. 15.
    H.S. Lu, L. Bai, W.-W. Xiong, P. Li, J. Ding, G. Zhang, T. Wu, Y. Zhao, J.-M. Lee, Y. Yang, B. Geng, Q. Zhang, Inorg. Chem. 53(16), 8529–8537 (2014)Google Scholar
  16. 16.
    W.W. Xiong, Q. Zhang, Angew. Chem. Int. Ed. 54(40), 11616–11623 (2015)Google Scholar
  17. 17.
    Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43(16), 5815–5840 (2014)Google Scholar
  18. 18.
    Y.Z. Zhang, Y. Wang, Y.L. Xie, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Nanoscale 6(23), 14354–14359 (2014)Google Scholar
  19. 19.
    D. Tian, X.L. Zhou, Y.H. Zhang, Z. Zhou, X.H. Bu, Inorg. Chem. 54(17), 8159–8161 (2015)Google Scholar
  20. 20.
    M.Q. Zhao, Q. Zhang, J.Q. Huang, G.L. Tian, J.Q. Nie, H.J. Peng, F. Wei, Nat. Commun. 5, 3410 (2014)Google Scholar
  21. 21.
    L. Karuppasamy, S. Anandam, C.-Y. Chen, J.J. Wu, Electrocatalysis 8(5), 430–441 (2017)Google Scholar
  22. 22.
    C. Peng, W. Yang, E. Wu, Y. Ma, Y. Zheng, Y. Nie, H. Zhang, J. Xu, J. Alloys Compd. 698, 250–258 (2017)Google Scholar
  23. 23.
    E.A. Monyoncho, S. Ntais, F. Soares, T.K. Woo, E.A. Baranova, J. Power Sources 287, 139–149 (2015)Google Scholar
  24. 24.
    A.B. Calcerrada, R. Ana, H.A.E. Dole, F. Dorado, E.A. Baranova, A. de Lucas-Consuegra, Electrocatalysis 9(3), 293–301 (2018)Google Scholar
  25. 25.
    R. Awasthi, R.N. Singh, Int. J. Hydrog. Energy 37(3), 2013–2110 (2012)Google Scholar
  26. 26.
    Z.S. Yang, J.J. Wu, Fuel Cells 12(3), 420–425 (2012)Google Scholar
  27. 27.
    I. Potzelberger, C.C. Mardare, L.M. Uiberlacker, S. Hild, A.W. Hassel, Electrocatalysis 9(3), 359–369 (2017)Google Scholar
  28. 28.
    B. Ruiz-Camacho, C. Morais, M.A. Valenzuela, V. Alonso-Vante, Catal. Today 202, 36–43 (2013)Google Scholar
  29. 29.
    D. Tripkovic, S. Stevanovic, A. Gavrilonic, J. Rogan, U. Lacnjevac, T. Kravic, V.M. Jovanovic, Electrocatalysis 9(1), 76–85 (2017)Google Scholar
  30. 30.
    Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Electrochim. Acta 54, 2203 (2009)Google Scholar
  31. 31.
    Z. Zhang, L. Xin, K. Sun, W. Li, Int. J. Hydrog. Energy 36(20), 12686–12697 (2011)Google Scholar
  32. 32.
    X. Yan, X. Li, Z. Yan, S. Komarneni, Appl. Surf. Sci. 308, 306–310 (2014)Google Scholar
  33. 33.
    D. Malonzo, S.M. Shaker, L. Ren, S.D. Prinslow, A.E. Platero-Prats, L.C. Gallington, J. Boryc, A.B. Thompson, T.C. Wang, O.K. Farha, J.T. Hupp, C.C. Lu, K.W. Chapman, J.C. Myers, R. Lee Penn, L. Gagliardi, M. Tsaparsis, A. Stein, Journal of American Society 138(8), 2739–2748 (2016)Google Scholar
  34. 34.
    J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130(42), 13850–13851 (2008)Google Scholar
  35. 35.
    H. Choi, J. Park, B. Kim, J. Phys. Chem. B 109, 4333–4340 (2005)Google Scholar
  36. 36.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409(2), 47–99 (2005)Google Scholar
  37. 37.
    G.U. Sumanasekera, C.K.W. Adu, S. Fang, P.C. Eklund, Phys. Rev. Lett. 85(5), 1096 (2000)Google Scholar
  38. 38.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19(16), 2577–2583 (2009)Google Scholar
  39. 39.
    G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, O. Paris, Carbon 44(15), 3239–3246 (2006)Google Scholar
  40. 40.
    Z. Pei, L. Li, L. Sun, S. Zhang, X.Q. Shan, S. Yang, B. Wen, Carbon 51, 156–163 (2013)Google Scholar
  41. 41.
    H. Liu, Y. Zhang, R. Li, X. Sun, S. Desilets, H. Abou-Rachid, M. Jaidann, L. Lussier, Carbon 48, 1498–1507 (2010)Google Scholar
  42. 42.
    A.D. Bhagwat, S.S. Sawant, B.G. Ankamwar, C.M. Mahajan, Journal of Nano- and Electronic Physics 7(4), 40370–40374 (2015)Google Scholar
  43. 43.
    J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.Y. Li, Y. Xia, Nano Lett. 5(10), 2058–2062 (2005)Google Scholar
  44. 44.
    V. Radmilovic, H.A. Gasteiger, P.N. Ross, Appl. Catal. B 99(1–2), 229–234 (2010)Google Scholar
  45. 45.
    O.O. Fashedemi, B. Julies, K.I. Ozoemena, Chem. Commun. 49, 2034–2036 (2013)Google Scholar
  46. 46.
    G. Yang, Y. Chen, Y. Zhou, Y. Tang, T. Lu, Electrochem. Commun. 12, 492–495 (2010)Google Scholar
  47. 47.
    C. Wen, Y. Wei, D. Tang, B. Sa, T. Zhang, C. Chen, Sci. Rep. 7, 4907 (2017)Google Scholar
  48. 48.
    D.A.J. Rand, R. Woods, J. Eletroanal. Chem. 31, 29–38 (1971)Google Scholar
  49. 49.
    E.H. Yu, U. Krewer, K. Scott, Energies 3(8), 1499–1528 (2010)Google Scholar
  50. 50.
    T. Ramulifho, K.I. Ozoemena, R.M. Modibedi, C.J. Jafta, M.K. Mathe, Electrochim. Acta 5, 310–320 (2012)Google Scholar
  51. 51.
    H. Mao, L. Wang, P. Zhu, Q. Xu, Q. Li, Int. J. Hydrog. Energy 39(31), 17583–17588 (2014)Google Scholar
  52. 52.
    Y.C. Wei, C.W. Liu, W.D. Kang, C.M. Lai, L.D. Tsai, K.W. Wang, J. Electroanal. Chem. 660(1), 64–70 (2011)Google Scholar
  53. 53.
    Q. Dong, Y. Zhao, X. Han, Y. Wang, M. Li, Y. Li, Int. J. Hydrog. Energy 39(27), 14669–14679 (2014)Google Scholar
  54. 54.
    M.S. Ahmed, S. Jeon, ACS Catal. 4, 1830–2837 (2014)Google Scholar
  55. 55.
    O.O. Fashedemi, K.I. Ozoemena, Electrochim. Acta 128, 279–286 (2014)Google Scholar
  56. 56.
    W. Du, K.E. Mackenzie, D.F. Milano, N.A. Deskins, D. Su, X. Teng, ACS Catal. 2(2), 287–297 (2012)Google Scholar
  57. 57.
    R.S. Nicholson, I. Shain, Anal. Chem. 36(4), 706–723 (1964)Google Scholar
  58. 58.
    J. Liu, J. Ye, C. Xu, S.P. Jiang, Y. Tong, Electrochem. Commun. 9(9), 2334–2339 (2007)Google Scholar
  59. 59.
    N.W. Maxakato, K.I. Ozoemena, C.J. Arendse, Electroanalysis 22(5), 519–529 (2010)Google Scholar
  60. 60.
    C.W. Xu, H. Wang, P.K. Shen, S.P. Jiang, Adv. Mater. 19(23), 4255–4259 (2007)Google Scholar
  61. 61.
    Q. Cui, S. Chao, Z. Bai, H. Yan, K. Wang, L. Yang, Electrochim Acta 132, 31–36 (2014)Google Scholar
  62. 62.
    J. Cai, Y. Zeng, Y. Guo, J. Power Sources 270, 257–261 (2014)Google Scholar
  63. 63.
    Z. Luo, J. Lu, C. Flox, R. Nafria, A. Genc, J. Arbiol, J. Liorca, M. Ibanez, J.R. Morante, A. Cabot, J. Mater. Chem. A 4, 16706–16713 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa
  2. 2.Department of PhysicsUniversity of South Africa (UNISA)JohannesburgSouth Africa

Personalised recommendations