, Volume 10, Issue 3, pp 203–213 | Cite as

The Catalytic Activity of Pt:Ru Nanoparticles for Ethylene Glycol and Ethanol Electrooxidation in a Direct Alcohol Fuel Cell

  • Júlio César M. SilvaEmail author
  • Spyridon Ntais
  • Vishwanathan Rajaraman
  • Érico Teixeira-Neto
  • Ângela A. Teixeira-Neto
  • Almir O. Neto
  • Rodolfo M. Antoniassi
  • Estevam V. Spinacé
  • Elena A. BaranovaEmail author
Original Research


In this study, we investigated the carbon-supported PtRu nanoparticles with atomic ratios of Pt:Ru of 100:0, 90:10, 70:30, and 50:50 for ethanol and ethylene glycol electrooxidation in alkaline media. The nanoparticles were synthesized using sodium borohydride method with 20 wt% of metals loading on carbon. The nanoparticle mean sizes were 7.3 nm, 5.7 nm, 5.2 nm, and 5.1 nm for Pt/C, Pt90Ru10/C, Pt70Ru30/C, and Pt50Ru50/C, respectively. X-ray diffraction (XRD) analysis revealed that Pt and PtRu electrocatalysts have face-centered cubic (fcc) structure and suggests the alloy formation for all PtRu/C materials, which was further supported by the X-ray photoelectron spectroscopy (XPS). Based on XPS analysis, Pt50Ru50/C has higher amount of Pt oxides on the surface than Pt70Ru30/C. Electrochemical results demonstrated that the addition of Ru to Pt enhances the catalytic activity towards ethanol and ethylene glycol electrooxidadion. The catalyst of Pt50Ru50/C composition showed the lowest onset potential for ethanol and ethylene glycol electrooxidation, which were 160 and 70 mV lower than for Pt/C, respectively. Furthermore, this catalyst outperformed Pt/C and other PtRu/C compositions in chronoamperometric and direct alcohol fuel cell (DAFC) experiments. DAFC experiments using Pt50Ru50/C as anode had the power density 40 and 14% higher than using Pt/C for ethanol and ethylene glycol, respectively. The promotion is due to the bi-functional mechanism and/or electronic effect of two metals in the alloy.


PtRu nanoparticles Ethanol Ethylene glycol Direct alcohol fuel cell Electronic effect 



The authors wish to thank FAPESP (Proc. no 2014/09087-4, 2014/09868-6) and CAPES for the financial support. Use of TEM facilities (JEOL JEM-2100F) of LNNano-CNPEM is greatly acknowledged.


  1. 1.
    C.-L. Sun, J.-S. Tang, N. Brazeau, J.-J. Wu, S. Ntais, C.-W. Yin, H.-L. Chou, E.A. Baranova, Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation. Electrochim. Acta 162, 282–289 (2015)CrossRefGoogle Scholar
  2. 2.
    J.C.M. Silva, B. Anea, R.F.B. De Souza, M.H.M.T. Assumpcao, M.L. Calegaro, A.O. Neto, M.C. Santos, J. Braz. Chem. Soc. 24, 1553–1560 (2013)CrossRefGoogle Scholar
  3. 3.
    N. Maffei, L. Pelletier, A. McFarlan, A high performance direct ammonia fuel cell using a mixed ionic and electronic conducting anode. J. Power Sources 175(1), 221–225 (2008)CrossRefGoogle Scholar
  4. 4.
    S.C. Zignani, V. Baglio, J.J. Linares, G. Monforte, E.R. Gonzalez, A.S. Aricò, Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochim. Acta 70, 255–265 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Falase, M. Main, K. Garcia, A. Serov, C. Lau, P. Atanassov, Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts. Electrochim. Acta 66, 295–301 (2012)CrossRefGoogle Scholar
  6. 6.
    J.M. Sieben, M.M.E. Duarte, Methanol, ethanol and ethylene glycol electro-oxidation at Pt and Pt–Ru catalysts electrodeposited over oxidized carbon nanotubes. Int. J. Hydrog. Energy 37(13), 9941–9947 (2012)CrossRefGoogle Scholar
  7. 7.
    J.F. Gomes, V.L. Oliveira, P.M.P. Pratta, G. Tremiliosi-Filho, Reactivity of alcohols with three-carbon atom chain on Pt in acidic medium. Electrocatalysis 6(1), 7–19 (2015)CrossRefGoogle Scholar
  8. 8.
    A.L. Ocampo, Q.-Z. Jiang, Z.-F. Ma, J.R. Varela, J. de Gyves, The effect of TiO2 on the catalytic activity of a PtRu/C catalyst for methanol oxidation. Electrocatalysis 5(4), 387–395 (2014)CrossRefGoogle Scholar
  9. 9.
    O.O. Fashedemi, K.I. Ozoemena, Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts. Electrochim. Acta 128, 279–286 (2014)CrossRefGoogle Scholar
  10. 10.
    H.J. Kim, S.M. Choi, S. Green, G.A. Tompsett, S.H. Lee, G.W. Huber, W.B. Kim, Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Appl. Catal. B Environ. 101(3-4), 366–375 (2011)CrossRefGoogle Scholar
  11. 11.
    A.O. Neto, S.G. da Silva, G.S. Buzzo, R.F.B. de Souza, M.H.M.T. Assumpção, E.V. Spinacé, J.C.M. Silva, Ethanol electrooxidation on PdIr/C electrocatalysts in alkaline media: electrochemical and fuel cell studies. Ionics 21(2), 487–495 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Simões, S. Baranton, C. Coutanceau, Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B Environ. 93(3-4), 354–362 (2010)CrossRefGoogle Scholar
  13. 13.
    S.G. da Silva, J.C.M. Silva, G.S. Buzzo, R.F.B. De Souza, E.V. Spinacé, A.O. Neto, M.H.M.T. Assumpção, Electrochemical and fuel cell evaluation of PtAu/C electrocatalysts for ethanol electro-oxidation in alkaline media. Int. J. Hydrog. Energy 39(19), 10121–10127 (2014)CrossRefGoogle Scholar
  14. 14.
    S.Y. Shen, T.S. Zhao, J.B. Xu, Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. Int. J. Hydrog. Energy 35(23), 12911–12917 (2010)CrossRefGoogle Scholar
  15. 15.
    D. González-Quijano, W.J. Pech-Rodríguez, J.I. Escalante-García, G. Vargas-Gutiérrez, F.J. Rodríguez-Varela, Electrocatalysts for ethanol and ethylene glycol oxidation reactions. Part I: effects of the polyol synthesis conditions on the characteristics and catalytic activity of Pt–Sn/C anodes. Int. J. Hydrog. Energy 39(29), 16676–16685 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Beyhan, K. Uosaki, J.M. Feliu, E. Herrero, Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. J. Electroanal. Chem. 707, 89–94 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Jiang, A. Hsu, D. Chu, R. Chen, Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. Int. J. Hydrog. Energy 35(1), 365–372 (2010)CrossRefGoogle Scholar
  18. 18.
    A.O. Neto, S.G. da Silva, G.S. Buzzo, R.F.B. de Souza, M.H.M.T. Assumpção, E.V. Spinacé, J.C.M. Silva, Ionics, 1–9 (2014)Google Scholar
  19. 19.
    W. Hauffe, J. Heitbaum, The electrooxidation of ethylene glycol at platinum in potassium hydroxide. Electrochim. Acta 23(4), 299–304 (1978)CrossRefGoogle Scholar
  20. 20.
    R.B. de Lima, V. Paganin, T. Iwasita, W. Vielstich, On the electrocatalysis of ethylene glycol oxidation. Electrochim. Acta 49(1), 85–91 (2003)CrossRefGoogle Scholar
  21. 21.
    E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells. J. Power Sources 195(11), 3431–3450 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Feng, W. Yin, Z. Li, C. Huang, Y. Wang, Ethylene glycol, 2-propanol electrooxidation in alkaline medium on the ordered intermetallic PtPb surface. Electrochim. Acta 55(23), 6991–6999 (2010)CrossRefGoogle Scholar
  23. 23.
    J.M. Sieben, M.M.E. Duarte, Nanostructured Pt and Pt–Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation. Int. J. Hydrog. Energy 36(5), 3313–3321 (2011)CrossRefGoogle Scholar
  24. 24.
    E.A. Baranova, M.A. Padilla, B. Halevi, T. Amir, K. Artyushkova, P. Atanassov, Electrooxidation of ethanol on PtSn nanoparticles in alkaline solution: correlation between structure and catalytic properties. Electrochim. Acta 80, 377–382 (2012)CrossRefGoogle Scholar
  25. 25.
    E.A. Monyoncho, S.N. Steinmann, P. Sautet, E.A. Baranova, C. Michel, Computational screening for selective catalysts: cleaving the C C bond during ethanol electro-oxidation reaction. Electrochim. Acta 274, 274–278 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Dutta, S.S. Mahapatra, J. Datta, High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrog. Energy 36(22), 14898–14906 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Huang, J. Cai, Y. Guo, A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium. Appl. Catal. B Environ. 129, 549–555 (2013)CrossRefGoogle Scholar
  28. 28.
    M.C. Figueiredo, R.M. Arán-Ais, J.M. Feliu, K. Kontturi, T. Kallio, Pt catalysts modified with Bi: Enhancement of the catalytic activity for alcohol oxidation in alkaline media. J. Catal. 312, 78–86 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim. Acta 52(24), 6622–6629 (2007)CrossRefGoogle Scholar
  30. 30.
    F. Colmati, E. Antolini, E.R. Gonzalez, Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J. Power Sources 157(1), 98–103 (2006)CrossRefGoogle Scholar
  31. 31.
    N. Nakagawa, Y. Kaneda, M. Wagatsuma, T. Tsujiguchi, Product distribution and the reaction kinetics at the anode of direct ethanol fuel cell with Pt/C, PtRu/C and PtRuRh/C. J. Power Sources 199, 103–109 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Thepkaew, S. Therdthianwong, A. Therdthianwong, A. Kucernak, N. Wongyao, Promotional roles of Ru and Sn in mesoporous PtRu and PtRuSn catalysts toward ethanol electrooxidation. Int. J. Hydrog. Energy 38(22), 9454–9463 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Hu, A. Zhu, Q. Zhang, Q. Liu, Preparation of PtRu/C core–shell catalyst with polyol method for alcohol oxidation. Int. J. Hydrog. Energy 41(26), 11359–11368 (2016)CrossRefGoogle Scholar
  34. 34.
    H. Xu, B. Yan, K. Zhang, J. Wang, S. Li, C. Wang, Y. Shiraishi, Y. Du, P. Yang, Eco-friendly and facile synthesis of novel bayberry-like PtRu alloy as efficient catalysts for ethylene glycol electrooxidation. Int. J. Hydrog. Energy 42(32), 20720–20728 (2017)CrossRefGoogle Scholar
  35. 35.
    P. Kanninen, M. Borghei, J. Hakanpää, E.I. Kauppinen, V. Ruiz, T. Kallio, Temperature dependent performance and catalyst layer properties of PtRu supported on modified few-walled carbon nanotubes for the alkaline direct ethanol fuel cell. J. Electroanal. Chem. 793, 48–57 (2017)CrossRefGoogle Scholar
  36. 36.
    R.F.B. De Souza, G.S. Buzzo, J.C.M. Silva, E.V. Spinacé, A.O. Neto, M.H.M.T. Assumpção, Effect of TiO2 content on ethanol electrooxidation in alkaline media using Pt nanoparticles supported on physical mixtures of carbon and TiO2 as electrocatalysts. Electrocatalysis 5(2), 213–219 (2014)CrossRefGoogle Scholar
  37. 37.
    J.C.M. Silva, G.S. Buzzo, R.F.B. De Souza, E.V. Spinacé, A.O. Neto, M.H.M.T. Assumpção, Enhanced electrooxidation of ethanol using Pd/C + TiO2 electrocatalysts in alkaline media. Electrocatalysis 6(1), 86–91 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Hüfner, G.K. Wertheim, Core-line asymmetries in the x-ray-photoemission spectra of metals. Phys. Rev. B 11(2), 678–683 (1975)CrossRefGoogle Scholar
  39. 39.
    Q. Jiang, L. Jiang, J. Qi, S. Wang, G. Sun, Experimental and density functional theory studies on PtPb/C bimetallic electrocatalysts for methanol electrooxidation reaction in alkaline media. Electrochim. Acta 56(18), 6431–6440 (2011)CrossRefGoogle Scholar
  40. 40.
    M.H.M.T. Assumpção, S.G. da Silva, R.F.B. de Souza, G.S. Buzzo, E.V. Spinacé, A.O. Neto, J.C.M. Silva, Direct ammonia fuel cell performance using PtIr/C as anode electrocatalysts. Int. J. Hydrog. Energy 39(10), 5148–5152 (2014)CrossRefGoogle Scholar
  41. 41.
    H. Hou, S. Wang, W. Jin, Q. Jiang, L. Sun, L. Jiang, G. Sun, KOH modified Nafion112 membrane for high performance alkaline direct ethanol fuel cell. Int. J. Hydrog. Energy 36(8), 5104–5109 (2011)CrossRefGoogle Scholar
  42. 42.
    M.H.M.T. Assumpção, S.G. da Silva, R.F.B. De Souza, G.S. Buzzo, E.V. Spinacé, M.C. Santos, A.O. Neto, J.C.M. Silva, Investigation of PdIr/C electrocatalysts as anode on the performance of direct ammonia fuel cell. J. Power Sources 268, 129–136 (2014)CrossRefGoogle Scholar
  43. 43.
    T.L. Lomocso, E.A. Baranova, Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M=Ir, Pd, SnOx) nanoparticles. Electrochim. Acta 56(24), 8551–8558 (2011)CrossRefGoogle Scholar
  44. 44.
    J.C.M. Silva, S.G. da Silva, R.F.B. De Souza, G.S. Buzzo, E.V. Spinacé, A.O. Neto, M.H.M.T. Assumpção, PtAu/C electrocatalysts as anodes for direct ammonia fuel cell. Appl. Catal. A Gen. 490, 133–138 (2015)CrossRefGoogle Scholar
  45. 45.
    M.H.M.T. Assumpção, R.M. Piasentin, P. Hammer, R.F.B. De Souza, G.S. Buzzo, M.C. Santos, E.V. Spinacé, A.O. Neto, J.C.M. Silva, Appl. Catal. B Environ. 174–175, 136–144 (2015)CrossRefGoogle Scholar
  46. 46.
    W.H. Lizcano-Valbuena, V.A. Paganin, E.R. Gonzalez, Methanol electro-oxidation on gas diffusion electrodes prepared with Pt□Ru/C catalysts. Electrochim. Acta 47(22-23), 3715–3722 (2002)CrossRefGoogle Scholar
  47. 47.
    E.A. Baranova, Y. Le Page, D. Ilin, C. Bock, B. MacDougall, P.H.J. Mercier, Size and composition for 1–5nm Ø PtRu alloy nano-particles from Cu Kα X-ray patterns. J. Alloys Compd. 471(1-2), 387–394 (2009)CrossRefGoogle Scholar
  48. 48.
    J.C.M. Silva, S. Ntais, É. Teixeira-Neto, E.V. Spinacé, X. Cui, A.O. Neto, E.A. Baranova, Evaluation of carbon supported platinum–ruthenium nanoparticles for ammonia electro-oxidation: combined fuel cell and electrochemical approach. Int. J. Hydrog. Energy 42(1), 193–201 (2017)CrossRefGoogle Scholar
  49. 49.
    R.J. Isaifan, S. Ntais, E.A. Baranova, Appl. Catal. A Gen. 464–465, 87–94 (2013)CrossRefGoogle Scholar
  50. 50.
    L.K. Ono, B. Roldan Cuenya, Formation and thermal stability of Au2O3on gold nanoparticles: size and support effects. J. Phys. Chem. C 112(12), 4676–4686 (2008)CrossRefGoogle Scholar
  51. 51.
    Y. Liang, J. Li, Q.-C. Xu, R.-Z. Hu, J.-D. Lin, D.-W. Liao, Characterization of composite carbon supported PtRu catalyst and its catalytic performance for methanol oxidation. J. Alloys Compd. 465(1-2), 296–304 (2008)CrossRefGoogle Scholar
  52. 52.
    A.S. Aricò, V. Baglio, A. Di Blasi, E. Modica, P.L. Antonucci, V. Antonucci, Analysis of the high-temperature methanol oxidation behaviour at carbon-supported Pt–Ru catalysts. J. Electroanal. Chem. 557, 167–176 (2003)CrossRefGoogle Scholar
  53. 53.
    E.A. Monyoncho, S. Ntais, F. Soares, T.K. Woo, E.A. Baranova, Synergetic effect of palladium–ruthenium nanostructures for ethanol electrooxidation in alkaline media. J. Power Sources 287, 139–149 (2015)CrossRefGoogle Scholar
  54. 54.
    B. Yang, Q. Lu, Y. Wang, L. Zhuang, J. Lu, P. Liu, J. Wang, R. Wang, Simple and low-cost preparation method for highly dispersed PtRu/C catalysts. Chem. Mater. 15(18), 3552–3557 (2003)CrossRefGoogle Scholar
  55. 55.
    A. Santasalo-Aarnio, S. Tuomi, K. Jalkanen, K. Kontturi, T. Kallio, The correlation of electrochemical and fuel cell results for alcohol oxidation in acidic and alkaline media. Electrochim. Acta 87, 730–738 (2013)CrossRefGoogle Scholar
  56. 56.
    L. Ma, D. Chu, R. Chen, Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int. J. Hydrog. Energy 37(15), 11185–11194 (2012)CrossRefGoogle Scholar
  57. 57.
    Y. Hu, A. Zhu, C. Zhang, Q. Zhang, Q. Liu, Microwave-assisted synthesis of double-shell PtRu/TiO2 catalyst towards methanol electro-oxidation. Int. J. Hydrog. Energy 40(45), 15652–15662 (2015)CrossRefGoogle Scholar
  58. 58.
    A.V. Tripković, S. Štrbac, K.D. Popović, Effect of temperature on the methanol oxidation at supported Pt and PtRu catalysts in alkaline solution. Electrochem. Commun. 5(6), 484–490 (2003)CrossRefGoogle Scholar
  59. 59.
    L. Ma, H. He, A. Hsu, R. Chen, PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. J. Power Sources 241, 696–702 (2013)CrossRefGoogle Scholar
  60. 60.
    M. Watanabe, S. Motoo, Electrocatalysis by ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60(3), 267–273 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Eletroquímica e Materiais Nanoestruturados, Campus ValonguinhoInstituto de Química da Universidade Federal FluminenseNiteróiBrazil
  2. 2.Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation (CCRI)University of OttawaOttawaCanada
  3. 3.Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasBrazil
  4. 4.Instituto de Pesquisas Energéticas e NuclearesSão PauloBrazil

Personalised recommendations